Limits...
Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus

Distributions of the estimated PM10 and NO2 concentrations in the Netherlands for the year 2001 (modeled with land use regression models).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492265&req=5

f1: Distributions of the estimated PM10 and NO2 concentrations in the Netherlands for the year 2001 (modeled with land use regression models).

Mentions: Figure 1 shows maps of the distributions of the estimated PM10 and NO2 concentrations in the Netherlands for 2001. For the addresses of the cohort members the median PM10 concentration was 29 μg/m3 [5th–95th percentile, 24 μg/m3–32 μg/m3; interquartile range (IQR) = 2.4]; the median NO2 concentration was 31 μg/m3 (5th–95th percentile, 19 μg/m3–44 μg/m3; IQR = 10.0 μg/m3). We estimated HRs per 10-μg/m3 increase in the pollutant concentration. When expressed per IQR, the estimates for PM10 become smaller because the IQR for PM10 is smaller than for NO2. The range (and IQR) in NO2 concentrations is larger than the range in PM10 concentrations, because NO2 is more influenced by local (traffic) emissions than PM10, which is more affected by long-range transport.


Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS).

Fischer PH, Marra M, Ameling CB, Hoek G, Beelen R, de Hoogh K, Breugelmans O, Kruize H, Janssen NA, Houthuijs D - Environ. Health Perspect. (2015)

Distributions of the estimated PM10 and NO2 concentrations in the Netherlands for the year 2001 (modeled with land use regression models).
© Copyright Policy - public-domain
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492265&req=5

f1: Distributions of the estimated PM10 and NO2 concentrations in the Netherlands for the year 2001 (modeled with land use regression models).
Mentions: Figure 1 shows maps of the distributions of the estimated PM10 and NO2 concentrations in the Netherlands for 2001. For the addresses of the cohort members the median PM10 concentration was 29 μg/m3 [5th–95th percentile, 24 μg/m3–32 μg/m3; interquartile range (IQR) = 2.4]; the median NO2 concentration was 31 μg/m3 (5th–95th percentile, 19 μg/m3–44 μg/m3; IQR = 10.0 μg/m3). We estimated HRs per 10-μg/m3 increase in the pollutant concentration. When expressed per IQR, the estimates for PM10 become smaller because the IQR for PM10 is smaller than for NO2. The range (and IQR) in NO2 concentrations is larger than the range in PM10 concentrations, because NO2 is more influenced by local (traffic) emissions than PM10, which is more affected by long-range transport.

Bottom Line: We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively).Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01).

View Article: PubMed Central - PubMed

Affiliation: National Institute for Public Health and the Environment, Bilthoven, the Netherlands.

ABSTRACT

Background: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations.

Objectives: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases.

Methods: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 μm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders.

Results: After adjustment for individual and area-specific confounders, for each 10-μg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10.

Conclusions: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.

No MeSH data available.


Related in: MedlinePlus