Limits...
Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

Rashydov NM, Hajduch M - Front Plant Sci (2015)

Bottom Line: Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011).We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations.Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kiev Ukraine.

ABSTRACT
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

No MeSH data available.


Related in: MedlinePlus

Schematic overview on the establishment of protein abundance profiles – modified from Klubicova et al. (2012a). Briefly, developing soybean seeds were harvested at 4, 5, 6 weeks after flowering (WAF) (flax seeds at 2, 4, and 6 WAF) and at a mature stage from plants grown in non-radioactive and radio-contaminated Chernobyl experimental fields (Supplementary Figure S1). Isolated total protein was resolved by two-dimensional protein electrophoresis (2-DE) in biological triplicate. The 2-DE gels were matched to the pooled (reference) gels using ImageMaster 4.9 software. Finally, abundance profiles from both experimental fields were matched and joint abundance profiles, i.e., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields, were established.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492160&req=5

Figure 2: Schematic overview on the establishment of protein abundance profiles – modified from Klubicova et al. (2012a). Briefly, developing soybean seeds were harvested at 4, 5, 6 weeks after flowering (WAF) (flax seeds at 2, 4, and 6 WAF) and at a mature stage from plants grown in non-radioactive and radio-contaminated Chernobyl experimental fields (Supplementary Figure S1). Isolated total protein was resolved by two-dimensional protein electrophoresis (2-DE) in biological triplicate. The 2-DE gels were matched to the pooled (reference) gels using ImageMaster 4.9 software. Finally, abundance profiles from both experimental fields were matched and joint abundance profiles, i.e., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields, were established.

Mentions: In order to provide a more detailed insight into the seed proteome in radio-contaminated environments, protein abundances profiles were established from developing soybean and flax seeds (Figure 2) from the second generation which were harvested from both Chernobyl experimental fields (Supplementary Figure S1B). Protein abundance profiles are capable of comprehensively characterizing protein abundances during seed filling. The approach has been used successfully in soybean (Hajduch et al., 2005), canola (Hajduch et al., 2006), castor (Houston et al., 2009), and Arabidopsis (Hajduch et al., 2010). In these Chernobyl studies, protein abundance profiles were first established for each experimental field and then matched to obtain joint abundance profiles (Figure 2). Using this approach, it was possible to provide a detailed overview of protein abundances during seed filling in soybean (Klubicova et al., 2012a) and flax (Klubicova et al., 2010) across both experimental fields. For instance, it was revealed that β-conclycinin significantly decreased during seed filling in radio-contaminated areas in the second soybean generation (Klubicova et al., 2012a). These analyses also revealed alterations of proteins associated with carbon metabolism in the cytoplasm and plastids and to the carboxylic acid cycle in the mitochondria (Klubicova et al., 2012a). In flax, increased abundance of proteins associated with isocitrate dehydrogenation, L-malate decarboxylation, pyruvate biosynthesis, and ethanol oxidation to acetaldehyde were detected at early stages of seed filling (Klubicova et al., 2013).


Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

Rashydov NM, Hajduch M - Front Plant Sci (2015)

Schematic overview on the establishment of protein abundance profiles – modified from Klubicova et al. (2012a). Briefly, developing soybean seeds were harvested at 4, 5, 6 weeks after flowering (WAF) (flax seeds at 2, 4, and 6 WAF) and at a mature stage from plants grown in non-radioactive and radio-contaminated Chernobyl experimental fields (Supplementary Figure S1). Isolated total protein was resolved by two-dimensional protein electrophoresis (2-DE) in biological triplicate. The 2-DE gels were matched to the pooled (reference) gels using ImageMaster 4.9 software. Finally, abundance profiles from both experimental fields were matched and joint abundance profiles, i.e., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields, were established.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492160&req=5

Figure 2: Schematic overview on the establishment of protein abundance profiles – modified from Klubicova et al. (2012a). Briefly, developing soybean seeds were harvested at 4, 5, 6 weeks after flowering (WAF) (flax seeds at 2, 4, and 6 WAF) and at a mature stage from plants grown in non-radioactive and radio-contaminated Chernobyl experimental fields (Supplementary Figure S1). Isolated total protein was resolved by two-dimensional protein electrophoresis (2-DE) in biological triplicate. The 2-DE gels were matched to the pooled (reference) gels using ImageMaster 4.9 software. Finally, abundance profiles from both experimental fields were matched and joint abundance profiles, i.e., profiles for the same spot across seed filling in non-radioactive and radio-contaminated experimental fields, were established.
Mentions: In order to provide a more detailed insight into the seed proteome in radio-contaminated environments, protein abundances profiles were established from developing soybean and flax seeds (Figure 2) from the second generation which were harvested from both Chernobyl experimental fields (Supplementary Figure S1B). Protein abundance profiles are capable of comprehensively characterizing protein abundances during seed filling. The approach has been used successfully in soybean (Hajduch et al., 2005), canola (Hajduch et al., 2006), castor (Houston et al., 2009), and Arabidopsis (Hajduch et al., 2010). In these Chernobyl studies, protein abundance profiles were first established for each experimental field and then matched to obtain joint abundance profiles (Figure 2). Using this approach, it was possible to provide a detailed overview of protein abundances during seed filling in soybean (Klubicova et al., 2012a) and flax (Klubicova et al., 2010) across both experimental fields. For instance, it was revealed that β-conclycinin significantly decreased during seed filling in radio-contaminated areas in the second soybean generation (Klubicova et al., 2012a). These analyses also revealed alterations of proteins associated with carbon metabolism in the cytoplasm and plastids and to the carboxylic acid cycle in the mitochondria (Klubicova et al., 2012a). In flax, increased abundance of proteins associated with isocitrate dehydrogenation, L-malate decarboxylation, pyruvate biosynthesis, and ethanol oxidation to acetaldehyde were detected at early stages of seed filling (Klubicova et al., 2013).

Bottom Line: Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011).We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations.Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kiev Ukraine.

ABSTRACT
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

No MeSH data available.


Related in: MedlinePlus