Limits...
Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

Rashydov NM, Hajduch M - Front Plant Sci (2015)

Bottom Line: The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area.We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations.Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kiev Ukraine.

ABSTRACT
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

No MeSH data available.


Related in: MedlinePlus

Experimental design in the Chernobyl area during the two-year proteomic survey. In the first year, local varieties of soybean (Glycine max [L.] Merr., variety Soniachna) and flax (Linum usitatissimum, L., variety Kyivskyi) were planted in radio-contaminated (R) and non-radioactive (C1) experimental fields in the Chernobyl area (Supplementary Figure S1). Seeds were harvested in biological triplicate and subjected to proteomic analyses. The following year, seeds not used for the analyses were planted into the same radio-contaminated field (R), but different non-radioactive (C2) experimental fields to obtain seeds from the second generation. To exclude alterations in seed proteomes related to field locations, only those differentially abundant proteins commonly observed across the two soybean and flax generations were considered.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492160&req=5

Figure 1: Experimental design in the Chernobyl area during the two-year proteomic survey. In the first year, local varieties of soybean (Glycine max [L.] Merr., variety Soniachna) and flax (Linum usitatissimum, L., variety Kyivskyi) were planted in radio-contaminated (R) and non-radioactive (C1) experimental fields in the Chernobyl area (Supplementary Figure S1). Seeds were harvested in biological triplicate and subjected to proteomic analyses. The following year, seeds not used for the analyses were planted into the same radio-contaminated field (R), but different non-radioactive (C2) experimental fields to obtain seeds from the second generation. To exclude alterations in seed proteomes related to field locations, only those differentially abundant proteins commonly observed across the two soybean and flax generations were considered.

Mentions: Experimental design for ecological field experiments should include several experimental fields to avoid pseudoreplication (Hurlbert, 1984). However, it is often difficult to establish and manage several experimental fields in heavily controlled radio-contaminated areas. Therefore, experimental design for Chernobyl (Figure 1) was modified and included (i) two non-radioactive fields (control) and one radio-contaminated experimental field (Supplementary Figures S1A,B), (ii) two plant species, and (iii) two successive years. An important aspect of this experimental design (Figure 1) is the changed location of the non-radioactive field after the first year. The logic behind this is to exclude alterations related to the differences between experimental fields (soil, pests, weather, etc).


Chernobyl seed project. Advances in the identification of differentially abundant proteins in a radio-contaminated environment.

Rashydov NM, Hajduch M - Front Plant Sci (2015)

Experimental design in the Chernobyl area during the two-year proteomic survey. In the first year, local varieties of soybean (Glycine max [L.] Merr., variety Soniachna) and flax (Linum usitatissimum, L., variety Kyivskyi) were planted in radio-contaminated (R) and non-radioactive (C1) experimental fields in the Chernobyl area (Supplementary Figure S1). Seeds were harvested in biological triplicate and subjected to proteomic analyses. The following year, seeds not used for the analyses were planted into the same radio-contaminated field (R), but different non-radioactive (C2) experimental fields to obtain seeds from the second generation. To exclude alterations in seed proteomes related to field locations, only those differentially abundant proteins commonly observed across the two soybean and flax generations were considered.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492160&req=5

Figure 1: Experimental design in the Chernobyl area during the two-year proteomic survey. In the first year, local varieties of soybean (Glycine max [L.] Merr., variety Soniachna) and flax (Linum usitatissimum, L., variety Kyivskyi) were planted in radio-contaminated (R) and non-radioactive (C1) experimental fields in the Chernobyl area (Supplementary Figure S1). Seeds were harvested in biological triplicate and subjected to proteomic analyses. The following year, seeds not used for the analyses were planted into the same radio-contaminated field (R), but different non-radioactive (C2) experimental fields to obtain seeds from the second generation. To exclude alterations in seed proteomes related to field locations, only those differentially abundant proteins commonly observed across the two soybean and flax generations were considered.
Mentions: Experimental design for ecological field experiments should include several experimental fields to avoid pseudoreplication (Hurlbert, 1984). However, it is often difficult to establish and manage several experimental fields in heavily controlled radio-contaminated areas. Therefore, experimental design for Chernobyl (Figure 1) was modified and included (i) two non-radioactive fields (control) and one radio-contaminated experimental field (Supplementary Figures S1A,B), (ii) two plant species, and (iii) two successive years. An important aspect of this experimental design (Figure 1) is the changed location of the non-radioactive field after the first year. The logic behind this is to exclude alterations related to the differences between experimental fields (soil, pests, weather, etc).

Bottom Line: The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area.We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations.Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected.

View Article: PubMed Central - PubMed

Affiliation: Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kiev Ukraine.

ABSTRACT
Plants have the ability to grow and successfully reproduce in radio-contaminated environments, which has been highlighted by nuclear accidents at Chernobyl (1986) and Fukushima (2011). The main aim of this article is to summarize the advances of the Chernobyl seed project which has the purpose to provide proteomic characterization of plants grown in the Chernobyl area. We present a summary of comparative proteomic studies on soybean and flax seeds harvested from radio-contaminated Chernobyl areas during two successive generations. Using experimental design developed for radio-contaminated areas, altered abundances of glycine betaine, seed storage proteins, and proteins associated with carbon assimilation into fatty acids were detected. Similar studies in Fukushima radio-contaminated areas might complement these data. The results from these Chernobyl experiments can be viewed in a user-friendly format at a dedicated web-based database freely available at http://www.chernobylproteomics.sav.sk.

No MeSH data available.


Related in: MedlinePlus