Limits...
The future of computer-aided sperm analysis.

Mortimer ST, van der Horst G, Mortimer D - Asian J. Androl. (2015 Jul-Aug)

Bottom Line: However, attempts to use CASA for human clinical semen analysis have largely met with poor success due to the inherent difficulties presented by many human semen samples caused by sperm clumping and heavy background debris that, until now, have precluded accurate digital image analysis.The authors review the improved capabilities of two modern CASA platforms (Hamilton Thorne CASA-II and Microptic SCA6) and consider their current and future applications with particular reference to directing our focus towards using this technology to assess functional rather than simple descriptive characteristics of spermatozoa.Specific requirements for validating CASA technology as a semi-automated system for human semen analysis are also provided, with particular reference to the accuracy and uncertainty of measurement expected of a robust medical laboratory test for implementation in clinical laboratories operating according to modern accreditation standards.

View Article: PubMed Central - PubMed

Affiliation: Oozoa Biomedical, West Vancouver, BC, Canada.

ABSTRACT
Computer-aided sperm analysis (CASA) technology was developed in the late 1980s for analyzing sperm movement characteristics or kinematics and has been highly successful in enabling this field of research. CASA has also been used with great success for measuring semen characteristics such as sperm concentration and proportions of progressive motility in many animal species, including wide application in domesticated animal production laboratories and reproductive toxicology. However, attempts to use CASA for human clinical semen analysis have largely met with poor success due to the inherent difficulties presented by many human semen samples caused by sperm clumping and heavy background debris that, until now, have precluded accurate digital image analysis. The authors review the improved capabilities of two modern CASA platforms (Hamilton Thorne CASA-II and Microptic SCA6) and consider their current and future applications with particular reference to directing our focus towards using this technology to assess functional rather than simple descriptive characteristics of spermatozoa. Specific requirements for validating CASA technology as a semi-automated system for human semen analysis are also provided, with particular reference to the accuracy and uncertainty of measurement expected of a robust medical laboratory test for implementation in clinical laboratories operating according to modern accreditation standards.

No MeSH data available.


Related in: MedlinePlus

(a) SCA analysis of ram spermatozoa showing three columns of paired images of spermatozoa, in each of which the left sub-column is the original image and the right sub-column is the automated analysis of each spermatozoon; yellow = acrosome; blue = rest of head; green = anterior part of midpiece. (b) Ram spermatozoa stained with SpermBlue; (c) screen shot of the entire spermatozoon including its tail as analyzed by the SCA.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4492043&req=5

Figure 3: (a) SCA analysis of ram spermatozoa showing three columns of paired images of spermatozoa, in each of which the left sub-column is the original image and the right sub-column is the automated analysis of each spermatozoon; yellow = acrosome; blue = rest of head; green = anterior part of midpiece. (b) Ram spermatozoa stained with SpermBlue; (c) screen shot of the entire spermatozoon including its tail as analyzed by the SCA.

Mentions: Sperm morphology needs to be better elaborated in humans and different animal species by including the entire cell, especially tail characteristics, and also using polychromatic stains. The SCA6 already employs adaptive thresholding to visualize the entire spermatozoon and then measure all its components, at least in ram spermatozoa (Figure 3). There should also be more uniformity in selecting stains for use in conjunction with CASA, specifically ones that are isosmotic and isotonic to spermatozoa and that produce a homogenous background, such as SpermBlue.4748 Other approaches could include eliminating staining and looking at the possibilities of more detailed analysis using phase contrast and Nomarski differential interference contrast (DIC) optics.


The future of computer-aided sperm analysis.

Mortimer ST, van der Horst G, Mortimer D - Asian J. Androl. (2015 Jul-Aug)

(a) SCA analysis of ram spermatozoa showing three columns of paired images of spermatozoa, in each of which the left sub-column is the original image and the right sub-column is the automated analysis of each spermatozoon; yellow = acrosome; blue = rest of head; green = anterior part of midpiece. (b) Ram spermatozoa stained with SpermBlue; (c) screen shot of the entire spermatozoon including its tail as analyzed by the SCA.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4492043&req=5

Figure 3: (a) SCA analysis of ram spermatozoa showing three columns of paired images of spermatozoa, in each of which the left sub-column is the original image and the right sub-column is the automated analysis of each spermatozoon; yellow = acrosome; blue = rest of head; green = anterior part of midpiece. (b) Ram spermatozoa stained with SpermBlue; (c) screen shot of the entire spermatozoon including its tail as analyzed by the SCA.
Mentions: Sperm morphology needs to be better elaborated in humans and different animal species by including the entire cell, especially tail characteristics, and also using polychromatic stains. The SCA6 already employs adaptive thresholding to visualize the entire spermatozoon and then measure all its components, at least in ram spermatozoa (Figure 3). There should also be more uniformity in selecting stains for use in conjunction with CASA, specifically ones that are isosmotic and isotonic to spermatozoa and that produce a homogenous background, such as SpermBlue.4748 Other approaches could include eliminating staining and looking at the possibilities of more detailed analysis using phase contrast and Nomarski differential interference contrast (DIC) optics.

Bottom Line: However, attempts to use CASA for human clinical semen analysis have largely met with poor success due to the inherent difficulties presented by many human semen samples caused by sperm clumping and heavy background debris that, until now, have precluded accurate digital image analysis.The authors review the improved capabilities of two modern CASA platforms (Hamilton Thorne CASA-II and Microptic SCA6) and consider their current and future applications with particular reference to directing our focus towards using this technology to assess functional rather than simple descriptive characteristics of spermatozoa.Specific requirements for validating CASA technology as a semi-automated system for human semen analysis are also provided, with particular reference to the accuracy and uncertainty of measurement expected of a robust medical laboratory test for implementation in clinical laboratories operating according to modern accreditation standards.

View Article: PubMed Central - PubMed

Affiliation: Oozoa Biomedical, West Vancouver, BC, Canada.

ABSTRACT
Computer-aided sperm analysis (CASA) technology was developed in the late 1980s for analyzing sperm movement characteristics or kinematics and has been highly successful in enabling this field of research. CASA has also been used with great success for measuring semen characteristics such as sperm concentration and proportions of progressive motility in many animal species, including wide application in domesticated animal production laboratories and reproductive toxicology. However, attempts to use CASA for human clinical semen analysis have largely met with poor success due to the inherent difficulties presented by many human semen samples caused by sperm clumping and heavy background debris that, until now, have precluded accurate digital image analysis. The authors review the improved capabilities of two modern CASA platforms (Hamilton Thorne CASA-II and Microptic SCA6) and consider their current and future applications with particular reference to directing our focus towards using this technology to assess functional rather than simple descriptive characteristics of spermatozoa. Specific requirements for validating CASA technology as a semi-automated system for human semen analysis are also provided, with particular reference to the accuracy and uncertainty of measurement expected of a robust medical laboratory test for implementation in clinical laboratories operating according to modern accreditation standards.

No MeSH data available.


Related in: MedlinePlus