Limits...
Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults.

Rojas-Benjumea MÁ, Sauqué-Poggio AM, Barriga-Paulino CI, Rodríguez-Martínez EI, Gómez CM - Behav Brain Funct (2015)

Bottom Line: Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained.The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age.Peak latencies of the FSP and P3b components decreased with age.

View Article: PubMed Central - PubMed

Affiliation: Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain.

ABSTRACT

Background: The present study analyzes the development of ERPs related to the process of selecting targets based on their novelty.

Methods: One hundred and sixty-seven subjects from 6 to 26 years old were recorded with 30 electrodes during a visual target novelty paradigm.

Results: Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained. In addition, the C response bias parameter evolved from a conservative to a neutral bias with age. Fronto-polar Selection Positivity (FSP) was statistically significant in all the age groups when standards and targets were compared. There was a statistically significant difference in the posterior Selection Negativity (SN) between the target and standard conditions in all age groups. The P3a component obtained was statistically significant in the emergent adult (18-21 years) and young adult (22-26 years) groups. The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age. Peak latencies of the FSP and P3b components decreased with age.

Conclusions: The results reveal differences in the ERP indexes for the cognitive evaluation of the stimuli presented, depending on the age of the subjects. The ability of the target condition to induce the modulation of the studied components would depend on the posterior-anterior gradient of cortex maturation and on the gradient of maturation of the low to higher order association areas.

No MeSH data available.


ERPs for midline electrodes in the two studied conditions: target and standard. The amplitudes elicited by the target stimuli were higher than the amplitudes elicited by the standard stimuli in most components and age groups. In addition, the different morphologies of ERPs in the two conditions can be observed. The components P2f (P2 frontal), P2p (P2 posterior), P3a and P3b are indicated by arrows
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4491272&req=5

Fig3: ERPs for midline electrodes in the two studied conditions: target and standard. The amplitudes elicited by the target stimuli were higher than the amplitudes elicited by the standard stimuli in most components and age groups. In addition, the different morphologies of ERPs in the two conditions can be observed. The components P2f (P2 frontal), P2p (P2 posterior), P3a and P3b are indicated by arrows

Mentions: Artifact corrected recordings were averaged off-line using a rejection protocol based on voltage amplitude. The recorded voltages that exceeded ±100 μV in the recordings of subjects from 16 years old on, and ±150 μV in the recordings of subjects up to 15 years old in any channel, were rejected for further analysis in order to eliminate any extra-cerebral contamination. The application of distinct voltage values was due to the known difference in the spectral power of children’s and adults’ recordings because children present higher spectral power than adults do [49–51]. If we had applied ±100 μV to all subjects, which is usually the standard value applied for artifact rejection, many non-contaminated trials of the children’s recordings would have been eliminated from the electrophysiological data. The ERPs obtained from children presented a similar noise level and baseline to those of adults (see Figs. 3 and 4), indicating that the procedure for selecting different voltage windows for artifact rejection for different ages was appropriate and did not distort the results of the inter-group and intra-group comparisons. Additionally, as the main statistical comparison would be between the amplitudes of the target and standard conditions within each group, and both conditions would be processed with the same rejection limits, the comparisons should not be affected. The total number of trials in each condition and age group is displayed in Table 2.Table 2


Development of behavioral parameters and ERPs in a novel-target visual detection paradigm in children, adolescents and young adults.

Rojas-Benjumea MÁ, Sauqué-Poggio AM, Barriga-Paulino CI, Rodríguez-Martínez EI, Gómez CM - Behav Brain Funct (2015)

ERPs for midline electrodes in the two studied conditions: target and standard. The amplitudes elicited by the target stimuli were higher than the amplitudes elicited by the standard stimuli in most components and age groups. In addition, the different morphologies of ERPs in the two conditions can be observed. The components P2f (P2 frontal), P2p (P2 posterior), P3a and P3b are indicated by arrows
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4491272&req=5

Fig3: ERPs for midline electrodes in the two studied conditions: target and standard. The amplitudes elicited by the target stimuli were higher than the amplitudes elicited by the standard stimuli in most components and age groups. In addition, the different morphologies of ERPs in the two conditions can be observed. The components P2f (P2 frontal), P2p (P2 posterior), P3a and P3b are indicated by arrows
Mentions: Artifact corrected recordings were averaged off-line using a rejection protocol based on voltage amplitude. The recorded voltages that exceeded ±100 μV in the recordings of subjects from 16 years old on, and ±150 μV in the recordings of subjects up to 15 years old in any channel, were rejected for further analysis in order to eliminate any extra-cerebral contamination. The application of distinct voltage values was due to the known difference in the spectral power of children’s and adults’ recordings because children present higher spectral power than adults do [49–51]. If we had applied ±100 μV to all subjects, which is usually the standard value applied for artifact rejection, many non-contaminated trials of the children’s recordings would have been eliminated from the electrophysiological data. The ERPs obtained from children presented a similar noise level and baseline to those of adults (see Figs. 3 and 4), indicating that the procedure for selecting different voltage windows for artifact rejection for different ages was appropriate and did not distort the results of the inter-group and intra-group comparisons. Additionally, as the main statistical comparison would be between the amplitudes of the target and standard conditions within each group, and both conditions would be processed with the same rejection limits, the comparisons should not be affected. The total number of trials in each condition and age group is displayed in Table 2.Table 2

Bottom Line: Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained.The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age.Peak latencies of the FSP and P3b components decreased with age.

View Article: PubMed Central - PubMed

Affiliation: Human Psychobiology Laboratory, Experimental Psychology Department, University of Seville, Sevilla, Spain.

ABSTRACT

Background: The present study analyzes the development of ERPs related to the process of selecting targets based on their novelty.

Methods: One hundred and sixty-seven subjects from 6 to 26 years old were recorded with 30 electrodes during a visual target novelty paradigm.

Results: Behavioral results showed good performance in children that improved with age: a decrease in RTs and errors and an increase in the d' sensitivity parameter with age were obtained. In addition, the C response bias parameter evolved from a conservative to a neutral bias with age. Fronto-polar Selection Positivity (FSP) was statistically significant in all the age groups when standards and targets were compared. There was a statistically significant difference in the posterior Selection Negativity (SN) between the target and standard conditions in all age groups. The P3a component obtained was statistically significant in the emergent adult (18-21 years) and young adult (22-26 years) groups. The modulation of the P3b component by novel targets was statistically significant in all the age groups, but it decreased in amplitude with age. Peak latencies of the FSP and P3b components decreased with age.

Conclusions: The results reveal differences in the ERP indexes for the cognitive evaluation of the stimuli presented, depending on the age of the subjects. The ability of the target condition to induce the modulation of the studied components would depend on the posterior-anterior gradient of cortex maturation and on the gradient of maturation of the low to higher order association areas.

No MeSH data available.