Limits...
Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography.

Wang J, Eng C, Chen-Wiegart YC, Wang J - Nat Commun (2015)

Bottom Line: Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation.We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles.The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries.

View Article: PubMed Central - PubMed

Affiliation: National Synchrotron Light Source II, Brookhaven National Laboratory, Building 743 Ring Road, Upton, New York 11973, USA.

ABSTRACT
Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries.

No MeSH data available.


Related in: MedlinePlus

3D view of selected Sn particles with different size range.The Sn particles are listed as three size ranges (5–10 μm, ∼2 μm and <1 μm). Scale bars, 10, 2 and 1 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4491187&req=5

f6: 3D view of selected Sn particles with different size range.The Sn particles are listed as three size ranges (5–10 μm, ∼2 μm and <1 μm). Scale bars, 10, 2 and 1 μm.

Mentions: To evaluate the size-dependent microstructural change, we selected three groups of representative particles with different size range (Fig. 6). For the smallest Sn particle (∼0.5 μm), no obvious microstructural degradation was observed but reversible expansion/shrinkage was observed during the 10 cycles. As for the medium size range (1–2 μm), mild microstructural degradation occurred, but for the larger particles (5–10 μm), significant structural change with large cracks was found (also see Supplementary Fig. 15 for more information). This result is consistent with the statistical analysis in Fig. 3b,c.


Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography.

Wang J, Eng C, Chen-Wiegart YC, Wang J - Nat Commun (2015)

3D view of selected Sn particles with different size range.The Sn particles are listed as three size ranges (5–10 μm, ∼2 μm and <1 μm). Scale bars, 10, 2 and 1 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4491187&req=5

f6: 3D view of selected Sn particles with different size range.The Sn particles are listed as three size ranges (5–10 μm, ∼2 μm and <1 μm). Scale bars, 10, 2 and 1 μm.
Mentions: To evaluate the size-dependent microstructural change, we selected three groups of representative particles with different size range (Fig. 6). For the smallest Sn particle (∼0.5 μm), no obvious microstructural degradation was observed but reversible expansion/shrinkage was observed during the 10 cycles. As for the medium size range (1–2 μm), mild microstructural degradation occurred, but for the larger particles (5–10 μm), significant structural change with large cracks was found (also see Supplementary Fig. 15 for more information). This result is consistent with the statistical analysis in Fig. 3b,c.

Bottom Line: Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation.We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles.The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries.

View Article: PubMed Central - PubMed

Affiliation: National Synchrotron Light Source II, Brookhaven National Laboratory, Building 743 Ring Road, Upton, New York 11973, USA.

ABSTRACT
Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries.

No MeSH data available.


Related in: MedlinePlus