Limits...
Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography.

Wang J, Eng C, Chen-Wiegart YC, Wang J - Nat Commun (2015)

Bottom Line: Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation.We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles.The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries.

View Article: PubMed Central - PubMed

Affiliation: National Synchrotron Light Source II, Brookhaven National Laboratory, Building 743 Ring Road, Upton, New York 11973, USA.

ABSTRACT
Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries.

No MeSH data available.


Related in: MedlinePlus

3D microstructural equilibrium of another Sn electrode in NIB.(a) 3D morphologies of the Sn electrode during 10 electrochemical cycles. (b) The statistical analysis of volume change during the 10 cycles. (c) The statistical analysis of surface area change during the ten electrochemical cycles. Scale bar, 10 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4491187&req=5

f5: 3D microstructural equilibrium of another Sn electrode in NIB.(a) 3D morphologies of the Sn electrode during 10 electrochemical cycles. (b) The statistical analysis of volume change during the 10 cycles. (c) The statistical analysis of surface area change during the ten electrochemical cycles. Scale bar, 10 μm.

Mentions: We performed the same in situ 3D experiment on a new sample to further confirm the surprising (de)sodiation equilibrium and microstructural reversibility. The glavanostatic discharge–charge profiles and cycler performance were shown in Supplementary Fig. 12, demonstrating the reversible sodiation–desodiation after the first cycle. Figure 5 shows the 3D morphological information during the 10 electrochemical cycles. The colours were shown based on the attenuation coefficient variation within the reconstruction images, indicating the phase change between Sn and NaxSn. Similar to the results in Fig. 4, after the microstructural degradation during the first cycle, the particles reach a structural equilibrium and mechanical reversibility, as shown in the tenth sodiated and desodiated sample. The 3D quantitative analysis of volume and surface area also shows the same trend. More information can be found at the mosaic images shown in Supplementary Figs 13 and 14.


Probing three-dimensional sodiation-desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography.

Wang J, Eng C, Chen-Wiegart YC, Wang J - Nat Commun (2015)

3D microstructural equilibrium of another Sn electrode in NIB.(a) 3D morphologies of the Sn electrode during 10 electrochemical cycles. (b) The statistical analysis of volume change during the 10 cycles. (c) The statistical analysis of surface area change during the ten electrochemical cycles. Scale bar, 10 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4491187&req=5

f5: 3D microstructural equilibrium of another Sn electrode in NIB.(a) 3D morphologies of the Sn electrode during 10 electrochemical cycles. (b) The statistical analysis of volume change during the 10 cycles. (c) The statistical analysis of surface area change during the ten electrochemical cycles. Scale bar, 10 μm.
Mentions: We performed the same in situ 3D experiment on a new sample to further confirm the surprising (de)sodiation equilibrium and microstructural reversibility. The glavanostatic discharge–charge profiles and cycler performance were shown in Supplementary Fig. 12, demonstrating the reversible sodiation–desodiation after the first cycle. Figure 5 shows the 3D morphological information during the 10 electrochemical cycles. The colours were shown based on the attenuation coefficient variation within the reconstruction images, indicating the phase change between Sn and NaxSn. Similar to the results in Fig. 4, after the microstructural degradation during the first cycle, the particles reach a structural equilibrium and mechanical reversibility, as shown in the tenth sodiated and desodiated sample. The 3D quantitative analysis of volume and surface area also shows the same trend. More information can be found at the mosaic images shown in Supplementary Figs 13 and 14.

Bottom Line: Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation.We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles.The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries.

View Article: PubMed Central - PubMed

Affiliation: National Synchrotron Light Source II, Brookhaven National Laboratory, Building 743 Ring Road, Upton, New York 11973, USA.

ABSTRACT
Materials degradation-the main limiting factor for widespread application of alloy anodes in battery systems-was assumed to be worse in sodium alloys than in lithium analogues due to the larger sodium-ion radius. Efforts to relieve this problem are reliant on the understanding of electrochemical and structural degradation. Here we track three-dimensional structural and chemical evolution of tin anodes in sodium-ion batteries with in situ synchrotron hard X-ray nanotomography. We find an unusual (de)sodiation equilibrium during multi-electrochemical cycles. The superior structural reversibility during 10 electrochemical cycles and the significantly different morphological change features from comparable lithium-ion systems suggest untapped potential in sodium-ion batteries. These findings differ from the conventional thought that sodium ions always lead to more severe fractures in the electrode than lithium ions, which could have impact in advancing development of sodium-ion batteries.

No MeSH data available.


Related in: MedlinePlus