Limits...
Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent.

Chen SC, Duan KJ - Int J Mol Sci (2015)

Bottom Line: However, activity retention of batchwise reactions was similar for both immobilized systems.All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis.The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioengineering, Tatung University, Taipei 104, Taiwan. monica94707@yahoo.com.tw.

ABSTRACT
β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

No MeSH data available.


Regeneration of nanoparticles for recoupling. The data are averaged from three samples. (Δ) Fe3O4-CS-immobilized enzyme.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4490457&req=5

ijms-16-12499-f009: Regeneration of nanoparticles for recoupling. The data are averaged from three samples. (Δ) Fe3O4-CS-immobilized enzyme.

Mentions: Immobilized enzymes can lose their activity after several uses. Therefore, for practical applications, the solid support should have good desorption/re-adsorption properties so they can be reused. For regeneration, the Fe3O4-CS nanoparticles were sequentially washed five times with buffer solutions having pH 9 and 4. Then, the stripped nanoparticles were used to adsorb fresh enzymes. This desorption/re-adsorption cycle was repeated five times. The activity of the β-galactosidase from the fifth adsorption/desorption cycle remained at approximately 92% of that of the first immobilization as shown in Figure 9. Similar results have also been observed by Wang et al. [36], who showed that when the enzyme glucoamylase was immobilized onto magnetic chitosan, the nanoparticles displayed good desorption/re-adsorption properties.


Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent.

Chen SC, Duan KJ - Int J Mol Sci (2015)

Regeneration of nanoparticles for recoupling. The data are averaged from three samples. (Δ) Fe3O4-CS-immobilized enzyme.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4490457&req=5

ijms-16-12499-f009: Regeneration of nanoparticles for recoupling. The data are averaged from three samples. (Δ) Fe3O4-CS-immobilized enzyme.
Mentions: Immobilized enzymes can lose their activity after several uses. Therefore, for practical applications, the solid support should have good desorption/re-adsorption properties so they can be reused. For regeneration, the Fe3O4-CS nanoparticles were sequentially washed five times with buffer solutions having pH 9 and 4. Then, the stripped nanoparticles were used to adsorb fresh enzymes. This desorption/re-adsorption cycle was repeated five times. The activity of the β-galactosidase from the fifth adsorption/desorption cycle remained at approximately 92% of that of the first immobilization as shown in Figure 9. Similar results have also been observed by Wang et al. [36], who showed that when the enzyme glucoamylase was immobilized onto magnetic chitosan, the nanoparticles displayed good desorption/re-adsorption properties.

Bottom Line: However, activity retention of batchwise reactions was similar for both immobilized systems.All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis.The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

View Article: PubMed Central - PubMed

Affiliation: Department of Bioengineering, Tatung University, Taipei 104, Taiwan. monica94707@yahoo.com.tw.

ABSTRACT
β-Galactosidase was immobilized on chitosan-coated magnetic Fe3O4 nanoparticles and was used to produce galactooligosaccharides (GOS) from lactose. Immobilized enzyme was prepared with or without the coupling agent, tris(hydroxymethyl)phosphine (THP). The two immobilized systems and the free enzyme achieved their maximum activity at pH 6.0 with an optimal temperature of 50 °C. The immobilized enzymes showed higher activities at a wider range of temperatures and pH. Furthermore, the immobilized enzyme coupled with THP showed higher thermal stability than that without THP. However, activity retention of batchwise reactions was similar for both immobilized systems. All the three enzyme systems produced GOS compound with similar concentration profiles, with a maximum GOS yield of 50.5% from 36% (w · v(-1)) lactose on a dry weight basis. The chitosan-coated magnetic Fe3O4 nanoparticles can be regenerated using a desorption/re-adsorption process described in this study.

No MeSH data available.