Limits...
Hemipteran mitochondrial genomes: features, structures and implications for phylogeny.

Wang Y, Chen J, Jiang LY, Qiao GX - Int J Mol Sci (2015)

Bottom Line: Special attention is given to the comparative analysis of repeat regions.We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels.This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. wangyuan0330@163.com.

ABSTRACT
The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

No MeSH data available.


Related in: MedlinePlus

Control regions of mitogenomes from some representative species of Hemiptera. (a) the control region of Chauliops fallax includes four parts; (b) the control region of Philaenus spumarius includes two fragments of tandem repeat sequences; (c) the control region of Schizaphis graminum includes three parts without repeat sequences.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4490450&req=5

ijms-16-12382-f005: Control regions of mitogenomes from some representative species of Hemiptera. (a) the control region of Chauliops fallax includes four parts; (b) the control region of Philaenus spumarius includes two fragments of tandem repeat sequences; (c) the control region of Schizaphis graminum includes three parts without repeat sequences.

Mentions: Most control regions of hemipteran mitogenomes were longer than 1 kb, with high rates of nucleotide substitution and indels, and a variable number of tandem repeats. Generally, one control region of the hemipteran mitogenome includes four parts without order: tandem repeat sequences, sequences of poly(T) stretch, a subregion with high A + T content, and stem-loop structures (for example, Chauliops fallaxFigure 5a). This feature of the control region was summarized by Cook for arthropods [76]. There are some interesting exceptions in the hemipteran mitogenomes. For example, in some species of Cicadomorpha (Philaenus spumarius) [34], Fulgoromorpha (Geisha distinctissima, Sivaloka damnosa, Laodelphax striatella and Laodelphax striatellus) [27,38,39,41] and Heteroptera (Alloeorhynchus bakeri) [51], two fragments of tandem repeat sequences insert into the control region separately (for example, Philaenus spumariusFigure 5b). A few of the control regions of hemipteran species did not contain all four parts (for example, Schizaphis graminumFigure 5c) [22]. The conserved sequences, stem-loop structures and tandem repeat sequences found in the present study can provide useful information for research of the phylogeny of specific groups [34,35,45,47,62]. For example, in the systematic research of Aphidinae, the phylogenetic tree based on PCGs is similar to the clusters of the stem-loop structures [62]. Another interesting question is how functionality is retained under such great variations in both length and sequence. Considering the high nucleotide substitution rate, both the secondary structures and the conserved segments might be key clues in determining the function of the control region.


Hemipteran mitochondrial genomes: features, structures and implications for phylogeny.

Wang Y, Chen J, Jiang LY, Qiao GX - Int J Mol Sci (2015)

Control regions of mitogenomes from some representative species of Hemiptera. (a) the control region of Chauliops fallax includes four parts; (b) the control region of Philaenus spumarius includes two fragments of tandem repeat sequences; (c) the control region of Schizaphis graminum includes three parts without repeat sequences.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4490450&req=5

ijms-16-12382-f005: Control regions of mitogenomes from some representative species of Hemiptera. (a) the control region of Chauliops fallax includes four parts; (b) the control region of Philaenus spumarius includes two fragments of tandem repeat sequences; (c) the control region of Schizaphis graminum includes three parts without repeat sequences.
Mentions: Most control regions of hemipteran mitogenomes were longer than 1 kb, with high rates of nucleotide substitution and indels, and a variable number of tandem repeats. Generally, one control region of the hemipteran mitogenome includes four parts without order: tandem repeat sequences, sequences of poly(T) stretch, a subregion with high A + T content, and stem-loop structures (for example, Chauliops fallaxFigure 5a). This feature of the control region was summarized by Cook for arthropods [76]. There are some interesting exceptions in the hemipteran mitogenomes. For example, in some species of Cicadomorpha (Philaenus spumarius) [34], Fulgoromorpha (Geisha distinctissima, Sivaloka damnosa, Laodelphax striatella and Laodelphax striatellus) [27,38,39,41] and Heteroptera (Alloeorhynchus bakeri) [51], two fragments of tandem repeat sequences insert into the control region separately (for example, Philaenus spumariusFigure 5b). A few of the control regions of hemipteran species did not contain all four parts (for example, Schizaphis graminumFigure 5c) [22]. The conserved sequences, stem-loop structures and tandem repeat sequences found in the present study can provide useful information for research of the phylogeny of specific groups [34,35,45,47,62]. For example, in the systematic research of Aphidinae, the phylogenetic tree based on PCGs is similar to the clusters of the stem-loop structures [62]. Another interesting question is how functionality is retained under such great variations in both length and sequence. Considering the high nucleotide substitution rate, both the secondary structures and the conserved segments might be key clues in determining the function of the control region.

Bottom Line: Special attention is given to the comparative analysis of repeat regions.We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels.This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. wangyuan0330@163.com.

ABSTRACT
The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

No MeSH data available.


Related in: MedlinePlus