Limits...
Hemipteran mitochondrial genomes: features, structures and implications for phylogeny.

Wang Y, Chen J, Jiang LY, Qiao GX - Int J Mol Sci (2015)

Bottom Line: Special attention is given to the comparative analysis of repeat regions.We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels.This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. wangyuan0330@163.com.

ABSTRACT
The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

No MeSH data available.


Related in: MedlinePlus

Nucleotide composition across 90 complete hemipteran mitogenomes. (A) A + T content and AT skew; (B) G+C content and GC skew. Dots in the cycle represent values for all the seven aphid mitogenomes.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4490450&req=5

ijms-16-12382-f003: Nucleotide composition across 90 complete hemipteran mitogenomes. (A) A + T content and AT skew; (B) G+C content and GC skew. Dots in the cycle represent values for all the seven aphid mitogenomes.

Mentions: The A%, T%, C% and G% values and the AT and GC skews were calculated for all available complete mitogenomes of Hemiptera species (Figure 3). Interestingly, the lowest and the highest A + T contents of the hemipteran mitogenomes were found in the suborder Sternorrhyncha (65.67% in Bemisia afer and 86.33% in Aleurodicus dugesii). Species from the suborders Fulgoromorpha, Coleorrhyncha and Heteroptera were all A and C skewed. This was also the case for the species of Cicadomorpha, except for Empoasca vitis. For the suborder Sternorrhyncha, nine species were A and C skewed, including all aphid species. This discovery of all aphid species forming a cluster is similar to the results of previous studies (cycle in Figure 3 [62,63]). In contrast, the seven other Sternorrhynchan species (whiteflies), which had highly rearranged gene orders [22,25], were G and T skewed.


Hemipteran mitochondrial genomes: features, structures and implications for phylogeny.

Wang Y, Chen J, Jiang LY, Qiao GX - Int J Mol Sci (2015)

Nucleotide composition across 90 complete hemipteran mitogenomes. (A) A + T content and AT skew; (B) G+C content and GC skew. Dots in the cycle represent values for all the seven aphid mitogenomes.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4490450&req=5

ijms-16-12382-f003: Nucleotide composition across 90 complete hemipteran mitogenomes. (A) A + T content and AT skew; (B) G+C content and GC skew. Dots in the cycle represent values for all the seven aphid mitogenomes.
Mentions: The A%, T%, C% and G% values and the AT and GC skews were calculated for all available complete mitogenomes of Hemiptera species (Figure 3). Interestingly, the lowest and the highest A + T contents of the hemipteran mitogenomes were found in the suborder Sternorrhyncha (65.67% in Bemisia afer and 86.33% in Aleurodicus dugesii). Species from the suborders Fulgoromorpha, Coleorrhyncha and Heteroptera were all A and C skewed. This was also the case for the species of Cicadomorpha, except for Empoasca vitis. For the suborder Sternorrhyncha, nine species were A and C skewed, including all aphid species. This discovery of all aphid species forming a cluster is similar to the results of previous studies (cycle in Figure 3 [62,63]). In contrast, the seven other Sternorrhynchan species (whiteflies), which had highly rearranged gene orders [22,25], were G and T skewed.

Bottom Line: Special attention is given to the comparative analysis of repeat regions.We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels.This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. wangyuan0330@163.com.

ABSTRACT
The study of Hemipteran mitochondrial genomes (mitogenomes) began with the Chagas disease vector, Triatoma dimidiata, in 2001. At present, 90 complete Hemipteran mitogenomes have been sequenced and annotated. This review examines the history of Hemipteran mitogenomes research and summarizes the main features of them including genome organization, nucleotide composition, protein-coding genes, tRNAs and rRNAs, and non-coding regions. Special attention is given to the comparative analysis of repeat regions. Gene rearrangements are an additional data type for a few families, and most mitogenomes are arranged in the same order to the proposed ancestral insect. We also discuss and provide insights on the phylogenetic analyses of a variety of taxonomic levels. This review is expected to further expand our understanding of research in this field and serve as a valuable reference resource.

No MeSH data available.


Related in: MedlinePlus