Limits...
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces.

Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu ST, Chanda D - Nat Commun (2015)

Bottom Line: Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions.A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal.In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Physics, University of Central Florida, 4111 Libra Drive, Physical Sciences Building 430, Orlando, Florida 32816, USA [2] NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA.

ABSTRACT
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

No MeSH data available.


Measured and predicted colour palette.(a) The palette of obtainable colour for structures of period between 200 and 380 nm as a function of applied voltage. (b) Simulated and experimental reflectance spectra of the selected surfaces as a function of period with the ON state anisotropic effective index [nxnynz]=[1.55 1.55 1.97] and 13.6 V μm−1 applied electric field, respectively. Dashed black trend lines show the linear relationship between plasmonic absorption and periodicity. (c) Simulated and experimental reflectance spectra of the surface with period 300 nm as a function of surrounding index and applied electric field, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4490413&req=5

f4: Measured and predicted colour palette.(a) The palette of obtainable colour for structures of period between 200 and 380 nm as a function of applied voltage. (b) Simulated and experimental reflectance spectra of the selected surfaces as a function of period with the ON state anisotropic effective index [nxnynz]=[1.55 1.55 1.97] and 13.6 V μm−1 applied electric field, respectively. Dashed black trend lines show the linear relationship between plasmonic absorption and periodicity. (c) Simulated and experimental reflectance spectra of the surface with period 300 nm as a function of surrounding index and applied electric field, respectively.

Mentions: The full range of colours obtainable with the LC-plasmonic system as a function of nanostructure period and applied electric field can be seen in Fig. 4a. Having the first (1,0) and second (1,1) order grating-coupled SPRs within the optical spectrum allows a full range of colours (that is, red, green and blue (RGB) and cyan, yellow and magenta (CYM)) as compared with single resonance subtractive colour, which is limited to the CYM colour space. This is further supported by the full circle of points about the central white point in the CIE chromaticity diagram depicted in Supplementary Fig. 4. We emphasize that LC on planer aluminium or nanostructured polymer does not generate colour and only with the combination of these two components does colour result (see Supplementary Fig. 5). Figure 4b,c shows experimental and theoretical reflection spectra corresponding to the structural colours outlined in Fig. 4a. Due to a ∼±20 nm deviation in structural periodicity during DLW, the FDTD reflection spectra of Fig. 4b,c are guassian-weighted averages about the indicated period. We use guassian-weighted averaging as larger deviations from the ideal period are less probable. The CIE colour-matching functions are used to obtain the line colour for each plotted spectra.


Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces.

Franklin D, Chen Y, Vazquez-Guardado A, Modak S, Boroumand J, Xu D, Wu ST, Chanda D - Nat Commun (2015)

Measured and predicted colour palette.(a) The palette of obtainable colour for structures of period between 200 and 380 nm as a function of applied voltage. (b) Simulated and experimental reflectance spectra of the selected surfaces as a function of period with the ON state anisotropic effective index [nxnynz]=[1.55 1.55 1.97] and 13.6 V μm−1 applied electric field, respectively. Dashed black trend lines show the linear relationship between plasmonic absorption and periodicity. (c) Simulated and experimental reflectance spectra of the surface with period 300 nm as a function of surrounding index and applied electric field, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4490413&req=5

f4: Measured and predicted colour palette.(a) The palette of obtainable colour for structures of period between 200 and 380 nm as a function of applied voltage. (b) Simulated and experimental reflectance spectra of the selected surfaces as a function of period with the ON state anisotropic effective index [nxnynz]=[1.55 1.55 1.97] and 13.6 V μm−1 applied electric field, respectively. Dashed black trend lines show the linear relationship between plasmonic absorption and periodicity. (c) Simulated and experimental reflectance spectra of the surface with period 300 nm as a function of surrounding index and applied electric field, respectively.
Mentions: The full range of colours obtainable with the LC-plasmonic system as a function of nanostructure period and applied electric field can be seen in Fig. 4a. Having the first (1,0) and second (1,1) order grating-coupled SPRs within the optical spectrum allows a full range of colours (that is, red, green and blue (RGB) and cyan, yellow and magenta (CYM)) as compared with single resonance subtractive colour, which is limited to the CYM colour space. This is further supported by the full circle of points about the central white point in the CIE chromaticity diagram depicted in Supplementary Fig. 4. We emphasize that LC on planer aluminium or nanostructured polymer does not generate colour and only with the combination of these two components does colour result (see Supplementary Fig. 5). Figure 4b,c shows experimental and theoretical reflection spectra corresponding to the structural colours outlined in Fig. 4a. Due to a ∼±20 nm deviation in structural periodicity during DLW, the FDTD reflection spectra of Fig. 4b,c are guassian-weighted averages about the indicated period. We use guassian-weighted averaging as larger deviations from the ideal period are less probable. The CIE colour-matching functions are used to obtain the line colour for each plotted spectra.

Bottom Line: Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions.A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal.In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Physics, University of Central Florida, 4111 Libra Drive, Physical Sciences Building 430, Orlando, Florida 32816, USA [2] NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, Florida 32826, USA.

ABSTRACT
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays.

No MeSH data available.