Limits...
The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells.

Chen Q, Zhou H, Fang Y, Stieg AZ, Song TB, Wang HH, Xu X, Liu Y, Lu S, You J, Sun P, McKay J, Goorsky MS, Yang Y - Nat Commun (2015)

Bottom Line: Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency.Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled.The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA [2] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.

ABSTRACT
Perovskite photovoltaics offer a compelling combination of extremely low-cost, ease of processing and high device performance. The optoelectronic properties of the prototypical CH3NH3PbI3 can be further adjusted by introducing other extrinsic ions. Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency. However, it requires a deep understanding to the role of extrinsic halide, especially in the absence of unpredictable morphological influence during film growth. Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled. The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals. Further optimization according this protocol leads to solar cells achieving power conversion efficiency of 17.91%.

No MeSH data available.


Related in: MedlinePlus

Device performance.PV parameters, for example, VOC (a), JSC (b), FF (c) and PCE (d), extracted from current–voltage measurements (under AM 1.5 radiation at ambient condition) of solar cells based on Reference and Samples 1 and 2. In comparison with devices based on Reference sample, the devices based on Sample 1 or Sample 2 shows superior or comparable performance, respectively. Ref., reference.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4490385&req=5

f3: Device performance.PV parameters, for example, VOC (a), JSC (b), FF (c) and PCE (d), extracted from current–voltage measurements (under AM 1.5 radiation at ambient condition) of solar cells based on Reference and Samples 1 and 2. In comparison with devices based on Reference sample, the devices based on Sample 1 or Sample 2 shows superior or comparable performance, respectively. Ref., reference.

Mentions: To correlate the incorporation of Cl in CH3NH3PbI3(Cl) films to device performance, we employed the above-mentioned absorber layers in a complete PV device that adopts the typical configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au. (see Supplementary Information) More than 10 nominally identical devices have been fabricated for each group of Reference, Sample 1 and Sample 2, respectively. Device performance is characterized by current density (J)–voltage(V) measurements under simulated AM 1.5 G (100 mW cm−2) solar irradiation in ambient conditions, with statistical distribution shown in Fig. 3 and the mean values summarized in Table 1. Reference devices produce open circuit voltages (VOC) in the range of 0.94–1.03 V, short circuit currents (JSC) in the range of 18.53–20.31 mA cm−2, fill factors (FF) in the range of 60.67–74.05% and the resulting PCE ranging from 11.77 to 15.08%. In comparison, superior performance is observed for devices based on Sample 1—VOC in the range of 1.01–1.03 V, JSC in the range of 20.26–21.66 mA cm−2, FF in the range of 69.7–76.8% and the resulting PCE ranging from 14.68 to 16.85%. On the other hand, devices based on Sample 2 show comparable performance to that of the Reference. The improved performance of devices based on Sample 1 reveals a positive effect arising from appropriate Cl incorporation in the CH3NH3PbI3(Cl) film. It can also be deduced that the relatively inferior performance of Sample 2, as compared with Sample 1, may be associated to the presence of the voids within the perovskite film provides shunting paths which deteriorate the device performance. It should be noted that both Sample 1 and the Reference sample exhibit similar conformity: continuous and void-free across the entire film but produce apparent differences in device performance. The enhanced performance of devices using Sample 1 in terms of Jsc, Voc and FF are possibly associated with the reduction of both parasitic current loss and series resistance. Compared with the Reference, it indicates that the improved device performance is less relative to the film morphology.


The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells.

Chen Q, Zhou H, Fang Y, Stieg AZ, Song TB, Wang HH, Xu X, Liu Y, Lu S, You J, Sun P, McKay J, Goorsky MS, Yang Y - Nat Commun (2015)

Device performance.PV parameters, for example, VOC (a), JSC (b), FF (c) and PCE (d), extracted from current–voltage measurements (under AM 1.5 radiation at ambient condition) of solar cells based on Reference and Samples 1 and 2. In comparison with devices based on Reference sample, the devices based on Sample 1 or Sample 2 shows superior or comparable performance, respectively. Ref., reference.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4490385&req=5

f3: Device performance.PV parameters, for example, VOC (a), JSC (b), FF (c) and PCE (d), extracted from current–voltage measurements (under AM 1.5 radiation at ambient condition) of solar cells based on Reference and Samples 1 and 2. In comparison with devices based on Reference sample, the devices based on Sample 1 or Sample 2 shows superior or comparable performance, respectively. Ref., reference.
Mentions: To correlate the incorporation of Cl in CH3NH3PbI3(Cl) films to device performance, we employed the above-mentioned absorber layers in a complete PV device that adopts the typical configuration of ITO/TiO2/Perovskite/Spiro-OMeTAD/Au. (see Supplementary Information) More than 10 nominally identical devices have been fabricated for each group of Reference, Sample 1 and Sample 2, respectively. Device performance is characterized by current density (J)–voltage(V) measurements under simulated AM 1.5 G (100 mW cm−2) solar irradiation in ambient conditions, with statistical distribution shown in Fig. 3 and the mean values summarized in Table 1. Reference devices produce open circuit voltages (VOC) in the range of 0.94–1.03 V, short circuit currents (JSC) in the range of 18.53–20.31 mA cm−2, fill factors (FF) in the range of 60.67–74.05% and the resulting PCE ranging from 11.77 to 15.08%. In comparison, superior performance is observed for devices based on Sample 1—VOC in the range of 1.01–1.03 V, JSC in the range of 20.26–21.66 mA cm−2, FF in the range of 69.7–76.8% and the resulting PCE ranging from 14.68 to 16.85%. On the other hand, devices based on Sample 2 show comparable performance to that of the Reference. The improved performance of devices based on Sample 1 reveals a positive effect arising from appropriate Cl incorporation in the CH3NH3PbI3(Cl) film. It can also be deduced that the relatively inferior performance of Sample 2, as compared with Sample 1, may be associated to the presence of the voids within the perovskite film provides shunting paths which deteriorate the device performance. It should be noted that both Sample 1 and the Reference sample exhibit similar conformity: continuous and void-free across the entire film but produce apparent differences in device performance. The enhanced performance of devices using Sample 1 in terms of Jsc, Voc and FF are possibly associated with the reduction of both parasitic current loss and series resistance. Compared with the Reference, it indicates that the improved device performance is less relative to the film morphology.

Bottom Line: Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency.Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled.The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals.

View Article: PubMed Central - PubMed

Affiliation: 1] Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA [2] California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.

ABSTRACT
Perovskite photovoltaics offer a compelling combination of extremely low-cost, ease of processing and high device performance. The optoelectronic properties of the prototypical CH3NH3PbI3 can be further adjusted by introducing other extrinsic ions. Specifically, chlorine incorporation has been shown to affect the morphological development of perovksite films, which results in improved optoelectronic characteristics for high efficiency. However, it requires a deep understanding to the role of extrinsic halide, especially in the absence of unpredictable morphological influence during film growth. Here we report an effective strategy to investigate the role of the extrinsic ion in the context of optoelectronic properties, in which the morphological factors that closely correlate to device performance are mostly decoupled. The chlorine incorporation is found to mainly improve the carrier transport across the heterojunction interfaces, rather than within the perovskite crystals. Further optimization according this protocol leads to solar cells achieving power conversion efficiency of 17.91%.

No MeSH data available.


Related in: MedlinePlus