Limits...
Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing.

Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, Choi IS, Lee JB - PLoS ONE (2015)

Bottom Line: Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples.The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household.Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Infectious Diseases, College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 143-701, Republic of Korea.

ABSTRACT
The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.

No MeSH data available.


Related in: MedlinePlus

Three-dimensional principal coordinate analysis (PCoA) plot of samples using the weighted UniFrac distance metric.Percentage of the diversity distribution explained by each axis is indicated on the fig.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4489859&req=5

pone.0131468.g005: Three-dimensional principal coordinate analysis (PCoA) plot of samples using the weighted UniFrac distance metric.Percentage of the diversity distribution explained by each axis is indicated on the fig.

Mentions: The diversity, richness, evenness, and means of each value in dogs and humans and the number of OTUs are presented in Table 2. The average richness of the human oral samples (73.1±11.9) was lower than that of the canine samples (76.5±10.4). This result indicated that the canine oral microbiome was richer than the human oral microbiome but it was not statistically significant (p-value = 0.6469). Comparison of the average alpha diversity indices (Shannon, Simpson) for human and canine samples revealed that the canine oral microbiome was more diverse than the human oral microbiome. The similarity of the human and canine oral microbiomes in the 10 oral samples was demonstrated using a phylogenetic tree generated by the neighbor-joining method (Fig 4). In the phylogenetic tree, the bacterial species in the canine and human oral microbiomes clustered together, this clustering was independent of whether the dog and human were from the same household. The intraspecies similarity of the oral microbiomes was higher than the intra-household similarity of the oral microbiomes. The similarity in the microbial communities of the canine samples was compared to that of the owners’ samples by the weighted UniFrac distance metric (Fig 5). The weighted UniFrac distance pairs in house 1 and 2, were lowest among the owners. However, the weighted UniFrac distance pairs in house 3 and 4 were not the lowest pairs. This result indicated that the oral microbiomes of dog 1 and dog 2 were the most similar to the oral microbiomes of their owners, but the oral microbiomes of dog 3 and dog 4 were most similar to that of the other owners.


Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing.

Oh C, Lee K, Cheong Y, Lee SW, Park SY, Song CS, Choi IS, Lee JB - PLoS ONE (2015)

Three-dimensional principal coordinate analysis (PCoA) plot of samples using the weighted UniFrac distance metric.Percentage of the diversity distribution explained by each axis is indicated on the fig.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4489859&req=5

pone.0131468.g005: Three-dimensional principal coordinate analysis (PCoA) plot of samples using the weighted UniFrac distance metric.Percentage of the diversity distribution explained by each axis is indicated on the fig.
Mentions: The diversity, richness, evenness, and means of each value in dogs and humans and the number of OTUs are presented in Table 2. The average richness of the human oral samples (73.1±11.9) was lower than that of the canine samples (76.5±10.4). This result indicated that the canine oral microbiome was richer than the human oral microbiome but it was not statistically significant (p-value = 0.6469). Comparison of the average alpha diversity indices (Shannon, Simpson) for human and canine samples revealed that the canine oral microbiome was more diverse than the human oral microbiome. The similarity of the human and canine oral microbiomes in the 10 oral samples was demonstrated using a phylogenetic tree generated by the neighbor-joining method (Fig 4). In the phylogenetic tree, the bacterial species in the canine and human oral microbiomes clustered together, this clustering was independent of whether the dog and human were from the same household. The intraspecies similarity of the oral microbiomes was higher than the intra-household similarity of the oral microbiomes. The similarity in the microbial communities of the canine samples was compared to that of the owners’ samples by the weighted UniFrac distance metric (Fig 5). The weighted UniFrac distance pairs in house 1 and 2, were lowest among the owners. However, the weighted UniFrac distance pairs in house 3 and 4 were not the lowest pairs. This result indicated that the oral microbiomes of dog 1 and dog 2 were the most similar to the oral microbiomes of their owners, but the oral microbiomes of dog 3 and dog 4 were most similar to that of the other owners.

Bottom Line: Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples.The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household.Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected.

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Infectious Diseases, College of Veterinary Medicine and Veterinary Science Research Institute, Konkuk University, Seoul, 143-701, Republic of Korea.

ABSTRACT
The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.

No MeSH data available.


Related in: MedlinePlus