Limits...
Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals.

Wu CS, Chen YY, Chuang CL, Chiang LM, Dwyer GB, Hsu YL, Huang AC, Lai CL, Hsieh KC - Nutr J (2015)

Bottom Line: The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively.The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively.The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.

View Article: PubMed Central - PubMed

Affiliation: Center for General Education, I-Shou University, No.1 Sec. 1, Syuecheng Rd., Dashu Dist, Kaoshiung City, 84001, Taiwan. wucs@isu.edu.tw.

ABSTRACT

Background: The objectives of this study were to develop a regression model for predicting fat-free mass (FFM) in a population of healthy Taiwanese individuals using standing foot-to-foot bioelectrical impedance analysis (BIA) and to test the model's performance in predicting FFM with different body fat percentages (BF%).

Methods: We used dual-energy X-ray absorptiometry (DXA) to measure the FFM of 554 healthy Asian subjects (age, 16-75 y; body mass index, 15.8-43.1 kg/m(2)). We also evaluated the validity of the developed multivariate model using a double cross-validation technique and assessed the accuracy of the model in an all-subjects sample and subgroup samples with different body fat levels.

Results: Predictors in the all-subjects multivariate model included height(2)/impedance, weight, year, and sex (FFM = 13.055 + 0.204 weight + 0.394 height(2)/Impedance - 0.136 age + 8.125 sex (sex: Female = 0, Male = 1), r(2) = 0.92, standard error of the estimate = 3.17 kg). The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively. The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively.

Conclusions: The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.

Show MeSH

Related in: MedlinePlus

Correlations (a) and difference (b) of FFM in all subjects estimated by FFMDXA and FFMBIA. The difference (calculated as FFMBIA - FFMDXA per Bland-Altman) is plotted against the mean of the measurements of FFMDXA and FFMBIA
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4489024&req=5

Fig1: Correlations (a) and difference (b) of FFM in all subjects estimated by FFMDXA and FFMBIA. The difference (calculated as FFMBIA - FFMDXA per Bland-Altman) is plotted against the mean of the measurements of FFMDXA and FFMBIA

Mentions: The results of the FFM predictive model by multiple regression analysis for all 554 subjects are shown in Table 3. Figure 1a shows the correlation for all subjects measured by FFMDXA and the predictive values of FFMBIA. The Passing–Bablok regression analysis indicated a foot-to-foot BIA and DXA equation as follows: FFMBIA = 0.911 FFMDXA + 4.27 with a 95 % confidence interval (CI) of 0.80 to 1.02 for the slope and a 95 % CI of −0.74 to 9.28 for the intercept of the regression model, indicating that the foot-to-foot BIA and DXA FFM estimate methods are interchangeable (p > 0.10). Figure 1b shows a Bland–Altman plot of the differences between the all-subjects FFMDXA and the predictive values of FFMBIA. For FFM, the –2SD to +2SD was −6.40 to 6.40 kg. The correlation between FFMBIA – FFMDXA and FFMDXA can be expressed as the regression line y = −0.089 × + 4.428 (r = 0.31, p < 0.001).Table 3


Predicting body composition using foot-to-foot bioelectrical impedance analysis in healthy Asian individuals.

Wu CS, Chen YY, Chuang CL, Chiang LM, Dwyer GB, Hsu YL, Huang AC, Lai CL, Hsieh KC - Nutr J (2015)

Correlations (a) and difference (b) of FFM in all subjects estimated by FFMDXA and FFMBIA. The difference (calculated as FFMBIA - FFMDXA per Bland-Altman) is plotted against the mean of the measurements of FFMDXA and FFMBIA
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4489024&req=5

Fig1: Correlations (a) and difference (b) of FFM in all subjects estimated by FFMDXA and FFMBIA. The difference (calculated as FFMBIA - FFMDXA per Bland-Altman) is plotted against the mean of the measurements of FFMDXA and FFMBIA
Mentions: The results of the FFM predictive model by multiple regression analysis for all 554 subjects are shown in Table 3. Figure 1a shows the correlation for all subjects measured by FFMDXA and the predictive values of FFMBIA. The Passing–Bablok regression analysis indicated a foot-to-foot BIA and DXA equation as follows: FFMBIA = 0.911 FFMDXA + 4.27 with a 95 % confidence interval (CI) of 0.80 to 1.02 for the slope and a 95 % CI of −0.74 to 9.28 for the intercept of the regression model, indicating that the foot-to-foot BIA and DXA FFM estimate methods are interchangeable (p > 0.10). Figure 1b shows a Bland–Altman plot of the differences between the all-subjects FFMDXA and the predictive values of FFMBIA. For FFM, the –2SD to +2SD was −6.40 to 6.40 kg. The correlation between FFMBIA – FFMDXA and FFMDXA can be expressed as the regression line y = −0.089 × + 4.428 (r = 0.31, p < 0.001).Table 3

Bottom Line: The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively.The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively.The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.

View Article: PubMed Central - PubMed

Affiliation: Center for General Education, I-Shou University, No.1 Sec. 1, Syuecheng Rd., Dashu Dist, Kaoshiung City, 84001, Taiwan. wucs@isu.edu.tw.

ABSTRACT

Background: The objectives of this study were to develop a regression model for predicting fat-free mass (FFM) in a population of healthy Taiwanese individuals using standing foot-to-foot bioelectrical impedance analysis (BIA) and to test the model's performance in predicting FFM with different body fat percentages (BF%).

Methods: We used dual-energy X-ray absorptiometry (DXA) to measure the FFM of 554 healthy Asian subjects (age, 16-75 y; body mass index, 15.8-43.1 kg/m(2)). We also evaluated the validity of the developed multivariate model using a double cross-validation technique and assessed the accuracy of the model in an all-subjects sample and subgroup samples with different body fat levels.

Results: Predictors in the all-subjects multivariate model included height(2)/impedance, weight, year, and sex (FFM = 13.055 + 0.204 weight + 0.394 height(2)/Impedance - 0.136 age + 8.125 sex (sex: Female = 0, Male = 1), r(2) = 0.92, standard error of the estimate = 3.17 kg). The correlation coefficients between predictive FFM by BIA (FFMBIA) and DXA-measured FFM (FFMDXA) in female subjects with a total-subjects BF%DXA of <20 %, 20 %-30 %, 30 %-40 % and >40 % were r = 0.87, 0.90, 0.91, 0.89, and 0.94, respectively, with bias ± 2SD of 0.0 ± 3.0 kg, -2.6 ± 1.7 kg, -1.5 ± 2.8 kg, 0.5 ± 2.7 kg, and 2.0 ± 2.9 kg, respectively. The correlation coefficients between FFMBIA and FFMDXA in male subjects with a total-subjects BF%DXA of <10 %, 10 %-20 %, 20 %-30 %, and >30 % were r = 0.89, 0.89, 0.90, 0.93, and 0.91, respectively, with bias ± 2SD of 0.0 ± 3.2 kg, -2.3 ± 2.5 kg, -0.5 ± 3.2 kg, 0.4 ± 3.1 kg, and 2.1 ± 3.2 kg, respectively.

Conclusions: The standing foot-to-foot BIA method developed in this study can accurately predict FFM in healthy Asian individuals with different levels of body fat.

Show MeSH
Related in: MedlinePlus