Limits...
Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study.

Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L - Lipids Health Dis (2015)

Bottom Line: The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. 214 healthy adults aged 18-60 years were recruited as part of a metabolic challenge study.Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge.Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides.

View Article: PubMed Central - PubMed

Affiliation: UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.

ABSTRACT

Background: The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles.

Methods: 214 healthy adults aged 18-60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS.

Results: Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides.

Conclusion: This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work.

Trial registration: Data, clinicaltrials.gov, NCT01172951.

No MeSH data available.


Related in: MedlinePlus

Heat maps showing the fold change of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Heat map visualisation of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Fold changes from baseline were calculated and are represented in the heat map; Red represents a positive fold change, green represents a negative fold change
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4489019&req=5

Fig1: Heat maps showing the fold change of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Heat map visualisation of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Fold changes from baseline were calculated and are represented in the heat map; Red represents a positive fold change, green represents a negative fold change

Mentions: Fold change analysis revealed that 12 lipids had a fold change > 1.5 compared to fasting values. Five lipids namely LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer, all had a fold change of > 1.5 at 120 min and this fold change remained for the timecourse of the OLTT. N-C10:0(OH)-Cer(2H) and N-C26:0-Cer(2H) had a fold change >1.5 at 60 min, PE aa C36:1, PG aa C34:1 and N-C24:0(OH)-Cer(2H) had a fold change of >1.5 at 180 min and N-C25:0(OH)-Cer fold change >1.5 at 300 min. Finally PG aa C36:2 had a fold change of >1.5 at 120 and 180 min. Visualisation of the changes was achieved using heat maps (Fig. 1). The heat maps from the PEs and the PCs concur that the greatest fold change differences were at 120 and 180 min. Interestingly the saturated LPCs had increased fold differences at 60 min while the unsaturated LPC had decreased fold changes compared to baseline at 60 min. These fold changes where inverted at 300 min with the saturated LPCs having a negative fold change at 300 min while the unsaturated LPCs had a positive fold changes at the final time point measured.Fig. 1


Modulation of the lipidomic profile due to a lipid challenge and fitness level: a postprandial study.

Morris C, O'Grada CM, Ryan MF, Gibney MJ, Roche HM, Gibney ER, Brennan L - Lipids Health Dis (2015)

Heat maps showing the fold change of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Heat map visualisation of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Fold changes from baseline were calculated and are represented in the heat map; Red represents a positive fold change, green represents a negative fold change
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4489019&req=5

Fig1: Heat maps showing the fold change of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Heat map visualisation of PCs, PEs and LPCs which change significantly from baseline value at each time point during the OLTT. Fold changes from baseline were calculated and are represented in the heat map; Red represents a positive fold change, green represents a negative fold change
Mentions: Fold change analysis revealed that 12 lipids had a fold change > 1.5 compared to fasting values. Five lipids namely LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer, all had a fold change of > 1.5 at 120 min and this fold change remained for the timecourse of the OLTT. N-C10:0(OH)-Cer(2H) and N-C26:0-Cer(2H) had a fold change >1.5 at 60 min, PE aa C36:1, PG aa C34:1 and N-C24:0(OH)-Cer(2H) had a fold change of >1.5 at 180 min and N-C25:0(OH)-Cer fold change >1.5 at 300 min. Finally PG aa C36:2 had a fold change of >1.5 at 120 and 180 min. Visualisation of the changes was achieved using heat maps (Fig. 1). The heat maps from the PEs and the PCs concur that the greatest fold change differences were at 120 and 180 min. Interestingly the saturated LPCs had increased fold differences at 60 min while the unsaturated LPC had decreased fold changes compared to baseline at 60 min. These fold changes where inverted at 300 min with the saturated LPCs having a negative fold change at 300 min while the unsaturated LPCs had a positive fold changes at the final time point measured.Fig. 1

Bottom Line: The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles. 214 healthy adults aged 18-60 years were recruited as part of a metabolic challenge study.Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge.Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides.

View Article: PubMed Central - PubMed

Affiliation: UCD Institute of Food and Health, University College Dublin, Belfield, Dublin 4, Ireland.

ABSTRACT

Background: The lipid composition of plasma is known to vary due to both phenotypic factors such as age, gender and BMI as well as with various diseases including cancer and neurological disorders. However, there is little investigation into the variation in the lipidome due to exercise and/ or metabolic challenges. The objectives of this present study were (i) To identify the glycerophospholipid, sphingolipids and ceramide changes in response to an oral lipid tolerance test (OLTT) in healthy adults and (ii) To identify the effect of aerobic fitness level on lipidomic profiles.

Methods: 214 healthy adults aged 18-60 years were recruited as part of a metabolic challenge study. A sub-group of 40 volunteers were selected for lipidomic analysis based on their aerobic fitness level. Ceramides, glycerophospholipids and sphingomyelins were quantified in baseline fasting plasma samples as well as at 60, 120, 180, 240 and 300 min following a lipid challenge using high-throughput flow injection ESI-MS/MS.

Results: Mixed model repeated measures analysis identified lipids which were significantly changing over the time course of the lipid challenge. Included in these lipids were lysophosphoethanolamines (LPE), phosphoethanolamines (PE), phosphoglycerides (PG) and ceramides (Cer). Five lipids (LPE a C18:2, LPE a C18:1, PE aa C36:2, PE aa C36:3 and N-C16:1-Cer) had a fold change > 1.5 at 120 min following the challenge and these lipids remained elevated. Furthermore, three of these lipids (LPE a C18:2, PE aa C36:2 and PE aa C36:3) were predictive of fasting and peak plasma TAG concentrations following the OLTT. Further analysis revealed that fitness level has a significant impact on the response to the OLTT: in particular significant differences between fitness groups were observed for phosphatidylcholines (PC), sphingomyelins (SM) and ceramides.

Conclusion: This study identified specific lipids which were modulated by an acute lipid challenge. Furthermore, it identified a series of lipids which were modulated by fitness level. Future lipidomic studies should take into account environmental factors such as diet and fitness level during biomarker discovery work.

Trial registration: Data, clinicaltrials.gov, NCT01172951.

No MeSH data available.


Related in: MedlinePlus