Limits...
Rapid response systems: a systematic review and meta-analysis.

Maharaj R, Raffaele I, Wendon J - Crit Care (2015)

Bottom Line: Although rapid response system teams have been widely adopted by many health systems, their effectiveness in reducing hospital mortality is uncertain.The implementation of RRS has been associated with an overall reduction in hospital mortality in both the adult (RR 0.87, 95 % CI 0.81-0.95, p<0.001) and paediatric (RR=0.82 95 % CI 0.76-0.89) in-patient population.Meta-regression did not identify the presence of a physician in the rapid response system to be significantly associated with a mortality reduction.

View Article: PubMed Central - PubMed

Affiliation: Kings College London, Denmark Hill, London, SE5 9RW, UK. ritesh.maharaj@kcl.ac.uk.

ABSTRACT

Introduction: Although rapid response system teams have been widely adopted by many health systems, their effectiveness in reducing hospital mortality is uncertain. We conducted a meta-analysis to examine the impact of rapid response teams on hospital mortality and cardiopulmonary arrest.

Method: We conducted a systematic review of studies published from January 1, 1990, through 31 December 2013, using PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature) and the Cochrane Library. We included studies that reported data on the primary outcomes of ICU and in-hospital mortality or cardiopulmonary arrests.

Results: Twenty-nine eligible studies were identified. The studies were analysed in groups based on adult and paediatric trials that were further sub-grouped on methodological design. There were 5 studies that were considered either cluster randomized control trial, controlled before after or interrupted time series. The remaining studies were before and after studies without a contemporaneous control. The implementation of RRS has been associated with an overall reduction in hospital mortality in both the adult (RR 0.87, 95 % CI 0.81-0.95, p<0.001) and paediatric (RR=0.82 95 % CI 0.76-0.89) in-patient population. There was substantial heterogeneity in both populations. The rapid response system team was also associated with a reduction in cardiopulmonary arrests in adults (RR 0.65, 95 % CI 0.61-0.70, p<0.001) and paediatric (RR=0.64 95 % CI 0.55-0.74) patients.

Conclusion: Rapid response systems were associated with a reduction in hospital mortality and cardiopulmonary arrest. Meta-regression did not identify the presence of a physician in the rapid response system to be significantly associated with a mortality reduction.

Show MeSH

Related in: MedlinePlus

Forest plot of the effect of rapid response system teams on hospital mortality in paediatric in-patients. Weights are calculated from random-effects analysis. CBA controlled before–after, CI confidence interval, ITS interrupted time series, RCT randomized controlled trial
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4489005&req=5

Fig3: Forest plot of the effect of rapid response system teams on hospital mortality in paediatric in-patients. Weights are calculated from random-effects analysis. CBA controlled before–after, CI confidence interval, ITS interrupted time series, RCT randomized controlled trial

Mentions: The implementation of RRS in the adult population has been associated with an overall reduction in hospital mortality (RR 0.87, 95 % CI 0.81–0.95, p <0.001) (Fig. 2). There was evidence of considerable heterogeneity (I2 = 86 %, p <0.001). The treatment effect in the cluster randomized trials, controlled before–after and interrupted time series studies was RR 0.91 (95 % CI 0.85–0.97) with less heterogeneity (I2 = 3 %). In the paediatric population, RRS also showed a reduction in mortality (RR 0.82, 95 % CI 0.76–0.89) with significant heterogeneity (I2 = 78 %) (Fig. 3). There was only one study in the cluster randomized control study, controlled before–after and interrupted time series subgroup so no subgroup analysis based on study design could be performed.Fig. 2


Rapid response systems: a systematic review and meta-analysis.

Maharaj R, Raffaele I, Wendon J - Crit Care (2015)

Forest plot of the effect of rapid response system teams on hospital mortality in paediatric in-patients. Weights are calculated from random-effects analysis. CBA controlled before–after, CI confidence interval, ITS interrupted time series, RCT randomized controlled trial
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4489005&req=5

Fig3: Forest plot of the effect of rapid response system teams on hospital mortality in paediatric in-patients. Weights are calculated from random-effects analysis. CBA controlled before–after, CI confidence interval, ITS interrupted time series, RCT randomized controlled trial
Mentions: The implementation of RRS in the adult population has been associated with an overall reduction in hospital mortality (RR 0.87, 95 % CI 0.81–0.95, p <0.001) (Fig. 2). There was evidence of considerable heterogeneity (I2 = 86 %, p <0.001). The treatment effect in the cluster randomized trials, controlled before–after and interrupted time series studies was RR 0.91 (95 % CI 0.85–0.97) with less heterogeneity (I2 = 3 %). In the paediatric population, RRS also showed a reduction in mortality (RR 0.82, 95 % CI 0.76–0.89) with significant heterogeneity (I2 = 78 %) (Fig. 3). There was only one study in the cluster randomized control study, controlled before–after and interrupted time series subgroup so no subgroup analysis based on study design could be performed.Fig. 2

Bottom Line: Although rapid response system teams have been widely adopted by many health systems, their effectiveness in reducing hospital mortality is uncertain.The implementation of RRS has been associated with an overall reduction in hospital mortality in both the adult (RR 0.87, 95 % CI 0.81-0.95, p<0.001) and paediatric (RR=0.82 95 % CI 0.76-0.89) in-patient population.Meta-regression did not identify the presence of a physician in the rapid response system to be significantly associated with a mortality reduction.

View Article: PubMed Central - PubMed

Affiliation: Kings College London, Denmark Hill, London, SE5 9RW, UK. ritesh.maharaj@kcl.ac.uk.

ABSTRACT

Introduction: Although rapid response system teams have been widely adopted by many health systems, their effectiveness in reducing hospital mortality is uncertain. We conducted a meta-analysis to examine the impact of rapid response teams on hospital mortality and cardiopulmonary arrest.

Method: We conducted a systematic review of studies published from January 1, 1990, through 31 December 2013, using PubMed, EMBASE, CINAHL (Cumulative Index to Nursing and Allied Health Literature) and the Cochrane Library. We included studies that reported data on the primary outcomes of ICU and in-hospital mortality or cardiopulmonary arrests.

Results: Twenty-nine eligible studies were identified. The studies were analysed in groups based on adult and paediatric trials that were further sub-grouped on methodological design. There were 5 studies that were considered either cluster randomized control trial, controlled before after or interrupted time series. The remaining studies were before and after studies without a contemporaneous control. The implementation of RRS has been associated with an overall reduction in hospital mortality in both the adult (RR 0.87, 95 % CI 0.81-0.95, p<0.001) and paediatric (RR=0.82 95 % CI 0.76-0.89) in-patient population. There was substantial heterogeneity in both populations. The rapid response system team was also associated with a reduction in cardiopulmonary arrests in adults (RR 0.65, 95 % CI 0.61-0.70, p<0.001) and paediatric (RR=0.64 95 % CI 0.55-0.74) patients.

Conclusion: Rapid response systems were associated with a reduction in hospital mortality and cardiopulmonary arrest. Meta-regression did not identify the presence of a physician in the rapid response system to be significantly associated with a mortality reduction.

Show MeSH
Related in: MedlinePlus