Limits...
Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses.

Chahar HS, Bao X, Casola A - Viruses (2015)

Bottom Line: Their role in viral infections is just beginning to be appreciated.Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments.This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

View Article: PubMed Central - PubMed

Affiliation: Departments of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA. hachahar@utmb.edu.

ABSTRACT
Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV) have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of exosome immune-isolation. To obtain exosomes free of contaminants, exosomes can be subjected to immunomagnetic selection using anti-CD63 antibody conjugated beads and then characterized by immunoblot, electron microscopy, and size determination.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4488737&req=5

viruses-07-02770-f004: Schematic representation of exosome immune-isolation. To obtain exosomes free of contaminants, exosomes can be subjected to immunomagnetic selection using anti-CD63 antibody conjugated beads and then characterized by immunoblot, electron microscopy, and size determination.

Mentions: When using immunoblot analysis, the exosome marker chosen for characterization should be selected with caution, as some viruses have been shown to incorporate exosome proteins. For example, proteomic studies utilizing liquid chromatography and tandem mass spectrometry (LC-MS/MS) found that influenza virus incorporates exosome markers ICAM1, Annexin A3, CD81, and CD9, while CD63 and ALIX were not present [91]. Similarly, exosomes and retroviruses share a variety of molecules like MHC-II [92,93], integrins (CD11a, CD18), co-stimulatory molecules (CD28, CD54), and complement neutralizing molecules (CD55, CD59) [5,35,94,95]. Various other host molecules/proteins acquired by enveloped viruses are reviewed in Cantin et al. [95]. Hence, the enriched exosomes isolated by ultracentrifugation or precipitation reagent should be further subjected to immunopurification methods like CD63 immunomagnetic bead isolation or other efficient virus purification strategies to obtain contamination-free populations of exosomes (Figure 4).


Exosomes and Their Role in the Life Cycle and Pathogenesis of RNA Viruses.

Chahar HS, Bao X, Casola A - Viruses (2015)

Schematic representation of exosome immune-isolation. To obtain exosomes free of contaminants, exosomes can be subjected to immunomagnetic selection using anti-CD63 antibody conjugated beads and then characterized by immunoblot, electron microscopy, and size determination.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4488737&req=5

viruses-07-02770-f004: Schematic representation of exosome immune-isolation. To obtain exosomes free of contaminants, exosomes can be subjected to immunomagnetic selection using anti-CD63 antibody conjugated beads and then characterized by immunoblot, electron microscopy, and size determination.
Mentions: When using immunoblot analysis, the exosome marker chosen for characterization should be selected with caution, as some viruses have been shown to incorporate exosome proteins. For example, proteomic studies utilizing liquid chromatography and tandem mass spectrometry (LC-MS/MS) found that influenza virus incorporates exosome markers ICAM1, Annexin A3, CD81, and CD9, while CD63 and ALIX were not present [91]. Similarly, exosomes and retroviruses share a variety of molecules like MHC-II [92,93], integrins (CD11a, CD18), co-stimulatory molecules (CD28, CD54), and complement neutralizing molecules (CD55, CD59) [5,35,94,95]. Various other host molecules/proteins acquired by enveloped viruses are reviewed in Cantin et al. [95]. Hence, the enriched exosomes isolated by ultracentrifugation or precipitation reagent should be further subjected to immunopurification methods like CD63 immunomagnetic bead isolation or other efficient virus purification strategies to obtain contamination-free populations of exosomes (Figure 4).

Bottom Line: Their role in viral infections is just beginning to be appreciated.Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments.This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

View Article: PubMed Central - PubMed

Affiliation: Departments of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA. hachahar@utmb.edu.

ABSTRACT
Exosomes are membrane-enclosed vesicles actively released into the extracellular space, whose content reflect the physiological/pathological state of the cells they originate from. These vesicles participate in cell-to-cell communication and transfer of biologically active proteins, lipids, and RNAs. Their role in viral infections is just beginning to be appreciated. RNA viruses are an important class of pathogens and affect millions of people worldwide. Recent studies on Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), human T-cell lymphotropic virus (HTLV), and Dengue Virus (DENV) have demonstrated that exosomes released from infected cells harbor and deliver many regulatory factors including viral RNA and proteins, viral and cellular miRNA, and other host functional genetic elements to neighboring cells, helping to establish productive infections and modulating cellular responses. Exosomes can either spread or limit an infection depending on the type of pathogen and target cells, and can be exploited as candidates for development of antiviral or vaccine treatments. This review summarizes recent progress made in understanding the role of exosomes in RNA virus infections with an emphasis on their potential contribution to pathogenesis.

No MeSH data available.


Related in: MedlinePlus