Limits...
Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy.

Furukawa J, Tsuda M, Okada K, Kimura T, Piao J, Tanaka S, Shinohara Y - PLoS ONE (2015)

Bottom Line: Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model.More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified.The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT).

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan.

ABSTRACT
Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.

No MeSH data available.


Related in: MedlinePlus

Cellular O-glycomes.Quantified O-glycans were classified according to their composition (a), number of sialic acid (Sia) residues (b), and core glycan structures (c). Comparison of relative levels of O-glycans showing N-glycolylneuraminic acid (Neu5Gc) incorporation among total sialylated O-glycans (d). Estimated biosynthetic pathway of O-glycans in NHA cells (e). Glycan classifications were based on the estimated glycan structures and compositions shown in S3 Table. Each value shown in b and d represents the mean ± range of two independent MALDI-TOF MS analyses.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4488535&req=5

pone.0128300.g005: Cellular O-glycomes.Quantified O-glycans were classified according to their composition (a), number of sialic acid (Sia) residues (b), and core glycan structures (c). Comparison of relative levels of O-glycans showing N-glycolylneuraminic acid (Neu5Gc) incorporation among total sialylated O-glycans (d). Estimated biosynthetic pathway of O-glycans in NHA cells (e). Glycan classifications were based on the estimated glycan structures and compositions shown in S3 Table. Each value shown in b and d represents the mean ± range of two independent MALDI-TOF MS analyses.

Mentions: In total, 12 O-glycans were quantitatively analyzed (S11–S15 Tables; S11 Fig). The fluctuations in total O-glycan expression levels were rather moderate following serial transformation of parental NHA cells, but various qualitative alterations were observed (Fig 5a). For example, upon introduction of SV40ER, the expression level of neutral O-glycans increased, while that of di-sialylated O-glycans decreased (Fig 5b). Subsequent introduction of H-RasV12 reduced the expression of neutral O-glycans and markedly increased the expression of di-sialylated O-glycans. Fucosylated O-glycans were below the limit of detection in all types of NHA cells.


Comprehensive Glycomics of a Multistep Human Brain Tumor Model Reveals Specific Glycosylation Patterns Related to Malignancy.

Furukawa J, Tsuda M, Okada K, Kimura T, Piao J, Tanaka S, Shinohara Y - PLoS ONE (2015)

Cellular O-glycomes.Quantified O-glycans were classified according to their composition (a), number of sialic acid (Sia) residues (b), and core glycan structures (c). Comparison of relative levels of O-glycans showing N-glycolylneuraminic acid (Neu5Gc) incorporation among total sialylated O-glycans (d). Estimated biosynthetic pathway of O-glycans in NHA cells (e). Glycan classifications were based on the estimated glycan structures and compositions shown in S3 Table. Each value shown in b and d represents the mean ± range of two independent MALDI-TOF MS analyses.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4488535&req=5

pone.0128300.g005: Cellular O-glycomes.Quantified O-glycans were classified according to their composition (a), number of sialic acid (Sia) residues (b), and core glycan structures (c). Comparison of relative levels of O-glycans showing N-glycolylneuraminic acid (Neu5Gc) incorporation among total sialylated O-glycans (d). Estimated biosynthetic pathway of O-glycans in NHA cells (e). Glycan classifications were based on the estimated glycan structures and compositions shown in S3 Table. Each value shown in b and d represents the mean ± range of two independent MALDI-TOF MS analyses.
Mentions: In total, 12 O-glycans were quantitatively analyzed (S11–S15 Tables; S11 Fig). The fluctuations in total O-glycan expression levels were rather moderate following serial transformation of parental NHA cells, but various qualitative alterations were observed (Fig 5a). For example, upon introduction of SV40ER, the expression level of neutral O-glycans increased, while that of di-sialylated O-glycans decreased (Fig 5b). Subsequent introduction of H-RasV12 reduced the expression of neutral O-glycans and markedly increased the expression of di-sialylated O-glycans. Fucosylated O-glycans were below the limit of detection in all types of NHA cells.

Bottom Line: Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model.More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified.The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT).

View Article: PubMed Central - PubMed

Affiliation: Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo, Japan.

ABSTRACT
Cancer cells frequently express glycans at different levels and/or with fundamentally different structures from those expressed by normal cells, and therefore elucidation and manipulation of these glycosylations may provide a beneficial approach to cancer therapy. However, the relationship between altered glycosylation and causal genetic alteration(s) is only partially understood. Here, we employed a unique approach that applies comprehensive glycomic analysis to a previously described multistep tumorigenesis model. Normal human astrocytes were transformed via the serial introduction of hTERT, SV40ER, H-RasV12, and myrAKT, thereby mimicking human brain tumor grades I-IV. More than 160 glycans derived from three major classes of cell surface glycoconjugates (N- and O-glycans on glycoproteins, and glycosphingolipids) were quantitatively explored, and specific glycosylation patterns related to malignancy were systematically identified. The sequential introduction of hTERT, SV40ER, H-RasV12, and myrAKT led to (i) temporal expression of pauci-mannose/mono-antennary type N-glycans and GD3 (hTERT); (ii) switching from ganglio- to globo-series glycosphingolipids and the appearance of Neu5Gc (hTERT and SV40ER); (iii) temporal expression of bisecting GlcNAc residues, α2,6-sialylation, and stage-specific embryonic antigen-4, accompanied by suppression of core 2 O-glycan biosynthesis (hTERT, SV40ER and Ras); and (iv) increased expression of (neo)lacto-series glycosphingolipids and fucosylated N-glycans (hTERT, SV40ER, Ras and AKT). These sequential and transient glycomic alterations may be useful for tumor grade diagnosis and tumor prognosis, and also for the prediction of treatment response.

No MeSH data available.


Related in: MedlinePlus