Limits...
The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications.

Gordts SC, Férir G, D'huys T, Petrova MI, Lebeer S, Snoeck R, Andrei G, Schols D - PLoS ONE (2015)

Bottom Line: Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 - 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity.Importantly, LA did not affect the growth of vaginal Lactobacilli strains.Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.

View Article: PubMed Central - PubMed

Affiliation: Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.

ABSTRACT

Objectives: Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide.

Results: LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 - 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 - 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ~1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 - 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains.

Conclusion: Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.

No MeSH data available.


Related in: MedlinePlus

LA inhibits HIV-1 DC-SIGN-related transmission to uninfected CD4+ target T cells.(A) Raji.DC-SIGN+ cells were pretreated with or without various concentrations of LA for 30 min. The binding of PE-conjugated anti-DC-SIGN mAb (clone DCN46) was measured by flow cytometry. The bars represent the % of anti-DC-SIGN binding relative to the untreated conditions. Mean ± SEM of 3 independent experiments is shown. (B) Effect of LA, HHA and PRO2000 on the capture of HIV-1 strain HE (R5/X4) by DC-SIGN on Raji.DC-SIGN+ cells. HIV-1 virions were pre-incubated for 30 min. with the test compounds before being exposed for 1h to Raji.DC-SIGN+ cells. After washing the cells, p24 HIV-1 Ag ELISA was used to quantify the amount of cell-associated virus. Bars represent the % virus binding relative to untreated conditions. Mean ± SEM of 3 independent experiments is shown with *p<0.05, according to Student’s T-test. (C) HIV-1 HE (R5/X4) virions were exposed to Raji.DC-SIGN+ cells for 1 h. After extensive washing, Raji.DC-SIGN/HE cells were cocultivated with or without compound pretreated uninfected CD4+ target C8166 T cells for 48h. Cocultures were stained with PE-conjugated anti-DC-SIGN and FITC-conjugated anti-CD4. The % of positive gated cells in the quadrants of the dot plots is given. One representative experiment out of 3 is shown.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4488490&req=5

pone.0131219.g003: LA inhibits HIV-1 DC-SIGN-related transmission to uninfected CD4+ target T cells.(A) Raji.DC-SIGN+ cells were pretreated with or without various concentrations of LA for 30 min. The binding of PE-conjugated anti-DC-SIGN mAb (clone DCN46) was measured by flow cytometry. The bars represent the % of anti-DC-SIGN binding relative to the untreated conditions. Mean ± SEM of 3 independent experiments is shown. (B) Effect of LA, HHA and PRO2000 on the capture of HIV-1 strain HE (R5/X4) by DC-SIGN on Raji.DC-SIGN+ cells. HIV-1 virions were pre-incubated for 30 min. with the test compounds before being exposed for 1h to Raji.DC-SIGN+ cells. After washing the cells, p24 HIV-1 Ag ELISA was used to quantify the amount of cell-associated virus. Bars represent the % virus binding relative to untreated conditions. Mean ± SEM of 3 independent experiments is shown with *p<0.05, according to Student’s T-test. (C) HIV-1 HE (R5/X4) virions were exposed to Raji.DC-SIGN+ cells for 1 h. After extensive washing, Raji.DC-SIGN/HE cells were cocultivated with or without compound pretreated uninfected CD4+ target C8166 T cells for 48h. Cocultures were stained with PE-conjugated anti-DC-SIGN and FITC-conjugated anti-CD4. The % of positive gated cells in the quadrants of the dot plots is given. One representative experiment out of 3 is shown.

Mentions: In the next set of experiments, we investigated the binding of LA to DC-SIGN, an important attachment receptor involved in sexual transmission of HIV-1 to CD4+ T cells [39]. At the highest concentrations tested (12.5 μM), it appeared that LA was not able to bind to the DC-SIGN receptor, since no dose-dependent inhibition of anti-DC-SIGN mAb was observed (Fig 3A).


The Low-Cost Compound Lignosulfonic Acid (LA) Exhibits Broad-Spectrum Anti-HIV and Anti-HSV Activity and Has Potential for Microbicidal Applications.

Gordts SC, Férir G, D'huys T, Petrova MI, Lebeer S, Snoeck R, Andrei G, Schols D - PLoS ONE (2015)

LA inhibits HIV-1 DC-SIGN-related transmission to uninfected CD4+ target T cells.(A) Raji.DC-SIGN+ cells were pretreated with or without various concentrations of LA for 30 min. The binding of PE-conjugated anti-DC-SIGN mAb (clone DCN46) was measured by flow cytometry. The bars represent the % of anti-DC-SIGN binding relative to the untreated conditions. Mean ± SEM of 3 independent experiments is shown. (B) Effect of LA, HHA and PRO2000 on the capture of HIV-1 strain HE (R5/X4) by DC-SIGN on Raji.DC-SIGN+ cells. HIV-1 virions were pre-incubated for 30 min. with the test compounds before being exposed for 1h to Raji.DC-SIGN+ cells. After washing the cells, p24 HIV-1 Ag ELISA was used to quantify the amount of cell-associated virus. Bars represent the % virus binding relative to untreated conditions. Mean ± SEM of 3 independent experiments is shown with *p<0.05, according to Student’s T-test. (C) HIV-1 HE (R5/X4) virions were exposed to Raji.DC-SIGN+ cells for 1 h. After extensive washing, Raji.DC-SIGN/HE cells were cocultivated with or without compound pretreated uninfected CD4+ target C8166 T cells for 48h. Cocultures were stained with PE-conjugated anti-DC-SIGN and FITC-conjugated anti-CD4. The % of positive gated cells in the quadrants of the dot plots is given. One representative experiment out of 3 is shown.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4488490&req=5

pone.0131219.g003: LA inhibits HIV-1 DC-SIGN-related transmission to uninfected CD4+ target T cells.(A) Raji.DC-SIGN+ cells were pretreated with or without various concentrations of LA for 30 min. The binding of PE-conjugated anti-DC-SIGN mAb (clone DCN46) was measured by flow cytometry. The bars represent the % of anti-DC-SIGN binding relative to the untreated conditions. Mean ± SEM of 3 independent experiments is shown. (B) Effect of LA, HHA and PRO2000 on the capture of HIV-1 strain HE (R5/X4) by DC-SIGN on Raji.DC-SIGN+ cells. HIV-1 virions were pre-incubated for 30 min. with the test compounds before being exposed for 1h to Raji.DC-SIGN+ cells. After washing the cells, p24 HIV-1 Ag ELISA was used to quantify the amount of cell-associated virus. Bars represent the % virus binding relative to untreated conditions. Mean ± SEM of 3 independent experiments is shown with *p<0.05, according to Student’s T-test. (C) HIV-1 HE (R5/X4) virions were exposed to Raji.DC-SIGN+ cells for 1 h. After extensive washing, Raji.DC-SIGN/HE cells were cocultivated with or without compound pretreated uninfected CD4+ target C8166 T cells for 48h. Cocultures were stained with PE-conjugated anti-DC-SIGN and FITC-conjugated anti-CD4. The % of positive gated cells in the quadrants of the dot plots is given. One representative experiment out of 3 is shown.
Mentions: In the next set of experiments, we investigated the binding of LA to DC-SIGN, an important attachment receptor involved in sexual transmission of HIV-1 to CD4+ T cells [39]. At the highest concentrations tested (12.5 μM), it appeared that LA was not able to bind to the DC-SIGN receptor, since no dose-dependent inhibition of anti-DC-SIGN mAb was observed (Fig 3A).

Bottom Line: Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 - 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity.Importantly, LA did not affect the growth of vaginal Lactobacilli strains.Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.

View Article: PubMed Central - PubMed

Affiliation: Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.

ABSTRACT

Objectives: Lignosulfonic acid (LA), a low-cost lignin-derived polyanionic macromolecule, was extensively studied for its anti-HIV and anti-HSV activity in various cellular assays, its mechanism of viral inhibition and safety profile as potential microbicide.

Results: LA demonstrated potent inhibitory activity of HIV replication against a wide range of R5 and X4 HIV strains and prevented the uptake of HIV by bystander CD4+ T cells from persistently infected T cells in vitro (IC50: 0.07 - 0.34 μM). LA also inhibited HSV-2 replication in vitro in different cell types (IC50: 0.42 - 1.1 μM) and in rodents in vivo. Furthermore, LA neutralized the HIV-1 and HSV-2 DC-SIGN-mediated viral transfer to CD4+ T cells (IC50: ~1 μM). In addition, dual HIV-1/HSV-2 infection in T cells was potently blocked by LA (IC50: 0.71 μM). No antiviral activity was observed against the non-enveloped viruses Coxsackie type B4 and Reovirus type 1. LA is defined as a HIV entry inhibitor since it interfered with gp120 binding to the cell surface of T cells. Pretreatment of PBMCs with LA neither increased expression levels of cellular activation markers (CD69, CD25 and HLA-DR), nor enhanced HIV-1 replication. Furthermore, we found that LA had non-antagonistic effects with acyclovir, PRO2000 or LabyA1 (combination index (CI): 0.46 - 1.03) in its anti-HSV-2 activity and synergized with tenofovir (CI: 0.59) in its anti-HIV-1 activity. To identify mechanisms of LA resistance, we generated in vitro a mutant HIV-1 NL4.3LAresistant virus, which acquired seven mutations in the HIV-1 envelope glycoproteins: S160N, V170N, Q280H and R389T in gp120 and K77Q, N113D and H132Y in gp41. Additionally, HIV-1 NL4.3LAresistant virus showed cross-resistance with feglymycin, enfuvirtide, PRO2000 and mAb b12, four well-described HIV binding/fusion inhibitors. Importantly, LA did not affect the growth of vaginal Lactobacilli strains.

Conclusion: Overall, these data highlight LA as a potential and unique low-cost microbicide displaying broad anti-HIV and anti-HSV activity.

No MeSH data available.


Related in: MedlinePlus