Limits...
Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury.

Liu FC, Tsai HI, Yu HP - Oxid Med Cell Longev (2015)

Bottom Line: A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury.Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways.The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan ; College of Medicine, Chang Gung University, Taoyuan, Taiwan.

ABSTRACT
Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

No MeSH data available.


Related in: MedlinePlus

The mechanisms and pathways of resveratrol in oxidative stress-mediated ischemia-reperfusion injury. The protective benefits of resveratrol involved are its scavenging, antioxidant, and anti-inflammatory effect and the signaling mechanisms mediated may be via a variety of intracellular signaling pathways, including upregulation of ER-related MAPK/HO-1 and Sirt1/PGC-1α pathway and inhibition of the TLR4 and NF-κB dependent pathway. ROS, reactive oxygen species; ER, estrogen receptor; HO-1, hemeoxygenase 1; SIRT1, sirtuin 1; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; TLR4, Toll-like receptor 4; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; NF-κB, nuclear factor-kappa B; JNK, c-Jun N-terminal kinase; p38 MAPK, p38 mitogen-activated protein kinase; MMP-9, metallopeptidase 9; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; GSH-Px, glutathione peroxidase (GSH-Px); NOX, NADPH oxidase; XO, xanthine oxidase; O2−, superoxide anions; HO−, hydroxyl free radicals; H2O2, hydrogen peroxide; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin 6; IL-10, interleukin 10; ICAM-1, intercellular adhesion molecule 1; MPO, myeloperoxidase.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4487914&req=5

fig1: The mechanisms and pathways of resveratrol in oxidative stress-mediated ischemia-reperfusion injury. The protective benefits of resveratrol involved are its scavenging, antioxidant, and anti-inflammatory effect and the signaling mechanisms mediated may be via a variety of intracellular signaling pathways, including upregulation of ER-related MAPK/HO-1 and Sirt1/PGC-1α pathway and inhibition of the TLR4 and NF-κB dependent pathway. ROS, reactive oxygen species; ER, estrogen receptor; HO-1, hemeoxygenase 1; SIRT1, sirtuin 1; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; TLR4, Toll-like receptor 4; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; NF-κB, nuclear factor-kappa B; JNK, c-Jun N-terminal kinase; p38 MAPK, p38 mitogen-activated protein kinase; MMP-9, metallopeptidase 9; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; GSH-Px, glutathione peroxidase (GSH-Px); NOX, NADPH oxidase; XO, xanthine oxidase; O2−, superoxide anions; HO−, hydroxyl free radicals; H2O2, hydrogen peroxide; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin 6; IL-10, interleukin 10; ICAM-1, intercellular adhesion molecule 1; MPO, myeloperoxidase.

Mentions: Resveratrol has been indicated to have many beneficial effects in various studies and experimental conditions. There is increasing evidence suggesting that resveratrol protects organ function after ischemia or shock-like reperfusion injury. Resveratrol can attenuate organs reperfusion injury through multiple pathways. However, the protective benefits of resveratrol may not simply be attributed by its scavenging, antioxidative, or anti-inflammatory effect. It is implicated that resveratrol is also mediated in part via a variety of intracellular signaling pathways including the regulation of the NOS, HO-1, SIRT1, ER, MAPK, PGC-1α, TLR4, and NF-κB (Figure 1). This complex network needs additional elucidation, more experimental studies, and clinical trials. Resveratrol might be a preventive and therapeutic agent to protect reperfusion-induced organ injury in future clinical treatment.


Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury.

Liu FC, Tsai HI, Yu HP - Oxid Med Cell Longev (2015)

The mechanisms and pathways of resveratrol in oxidative stress-mediated ischemia-reperfusion injury. The protective benefits of resveratrol involved are its scavenging, antioxidant, and anti-inflammatory effect and the signaling mechanisms mediated may be via a variety of intracellular signaling pathways, including upregulation of ER-related MAPK/HO-1 and Sirt1/PGC-1α pathway and inhibition of the TLR4 and NF-κB dependent pathway. ROS, reactive oxygen species; ER, estrogen receptor; HO-1, hemeoxygenase 1; SIRT1, sirtuin 1; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; TLR4, Toll-like receptor 4; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; NF-κB, nuclear factor-kappa B; JNK, c-Jun N-terminal kinase; p38 MAPK, p38 mitogen-activated protein kinase; MMP-9, metallopeptidase 9; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; GSH-Px, glutathione peroxidase (GSH-Px); NOX, NADPH oxidase; XO, xanthine oxidase; O2−, superoxide anions; HO−, hydroxyl free radicals; H2O2, hydrogen peroxide; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin 6; IL-10, interleukin 10; ICAM-1, intercellular adhesion molecule 1; MPO, myeloperoxidase.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4487914&req=5

fig1: The mechanisms and pathways of resveratrol in oxidative stress-mediated ischemia-reperfusion injury. The protective benefits of resveratrol involved are its scavenging, antioxidant, and anti-inflammatory effect and the signaling mechanisms mediated may be via a variety of intracellular signaling pathways, including upregulation of ER-related MAPK/HO-1 and Sirt1/PGC-1α pathway and inhibition of the TLR4 and NF-κB dependent pathway. ROS, reactive oxygen species; ER, estrogen receptor; HO-1, hemeoxygenase 1; SIRT1, sirtuin 1; eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; TLR4, Toll-like receptor 4; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; NF-κB, nuclear factor-kappa B; JNK, c-Jun N-terminal kinase; p38 MAPK, p38 mitogen-activated protein kinase; MMP-9, metallopeptidase 9; SOD, superoxide dismutase; CAT, catalase; GSH, glutathione; GSH-Px, glutathione peroxidase (GSH-Px); NOX, NADPH oxidase; XO, xanthine oxidase; O2−, superoxide anions; HO−, hydroxyl free radicals; H2O2, hydrogen peroxide; TNF-α, tumor necrosis factor-alpha; IL-6, interleukin 6; IL-10, interleukin 10; ICAM-1, intercellular adhesion molecule 1; MPO, myeloperoxidase.
Mentions: Resveratrol has been indicated to have many beneficial effects in various studies and experimental conditions. There is increasing evidence suggesting that resveratrol protects organ function after ischemia or shock-like reperfusion injury. Resveratrol can attenuate organs reperfusion injury through multiple pathways. However, the protective benefits of resveratrol may not simply be attributed by its scavenging, antioxidative, or anti-inflammatory effect. It is implicated that resveratrol is also mediated in part via a variety of intracellular signaling pathways including the regulation of the NOS, HO-1, SIRT1, ER, MAPK, PGC-1α, TLR4, and NF-κB (Figure 1). This complex network needs additional elucidation, more experimental studies, and clinical trials. Resveratrol might be a preventive and therapeutic agent to protect reperfusion-induced organ injury in future clinical treatment.

Bottom Line: A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury.Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways.The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 333, Taiwan ; College of Medicine, Chang Gung University, Taoyuan, Taiwan.

ABSTRACT
Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.

No MeSH data available.


Related in: MedlinePlus