Limits...
Differentially expressed and activated proteins associated with non small cell lung cancer tissues.

Nigro E, Imperlini E, Scudiero O, Monaco ML, Polito R, Mazzarella G, Orrù S, Bianco A, Daniele A - Respir. Res. (2015)

Bottom Line: Subsequently, MS/MS outputs were analyzed by the Protein Discoverer platform for label-free quantitation analysis.Finally, results were confirmed by western blotting analysis.Furthermore, we found significant differential expression of 20 proteins (Rsc ≥ 1.50 or ≤ -1.50) of which 7 are under-expressed and 13 over-expressed in NSCLC lung tissues.

View Article: PubMed Central - PubMed

Affiliation: CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy.

ABSTRACT

Background: Lung cancer is a leading cause of mortality. The most common cancer subtype, non small cell lung cancer (NSCLC), accounts for 85-90% all cases and is mainly caused by environmental and genetic factors. Mechanisms involved in lung carcinogenesis include deregulation of several kinases and molecular pathways affecting cell proliferation, apoptosis and differentiation. Despite advances in lung cancer detection, diagnosis and staging, survival rate still remains poor and novel biomarkers for both diagnosis and therapy need to be identified. In the present study, we have explored the potential of novel specific biomarkers in the diagnosis of NSCLC, and the over-expression/activation of several kinases involved in disease development and progression.

Method: Lung tumor tissue specimens and adjacent cancer-free tissues from 8 NSCLC patients undergoing surgery were collected. The differential activation status of ERK1/2, AKT and IKBα/NF-κβ was analyzed. Subsequently, protein expression profile of NSCLC vs normal surrounding tissue was compared by a proteomic approach using LC-MS MS. Subsequently, MS/MS outputs were analyzed by the Protein Discoverer platform for label-free quantitation analysis. Finally, results were confirmed by western blotting analysis.

Results: This study confirms the involvement of ERK1/2, AKT, IKBα and NF-κβ proteins in NSCLC demonstrating a significant over-activation of all tested proteins. Furthermore, we found significant differential expression of 20 proteins (Rsc ≥ 1.50 or ≤ -1.50) of which 7 are under-expressed and 13 over-expressed in NSCLC lung tissues. Finally, we validated, by western blotting, the two most under-expressed NSCLC tissue proteins, carbonic anhydrase I and II isoforms.

Conclusion: Our data further support the possibility of developing both diagnostic tests and innovative targeted therapy in NSCLC. In addition to selective inhibitors of ERK1/2, AKT, IKBα and NF-κβ, as therapeutic options, our data, for the first time, indicates carbonic anhydrase I and II as attractive targets for development of diagnostic tools enabling selection of patients for a more specific therapy in NSCLC.

No MeSH data available.


Related in: MedlinePlus

Western blot analysis confirms CAI and CAII as the two most differentially expressed proteins in NSCLC compared to control tissues. One representative western blot image (a) and graphical representation of pixel quantization (b) of CAI and CAII in lung tissues from 3 NSCLC patients (3 with histotype of AC and 1 with histotype of ASC). Each experiment was performed three times in duplicate* = p < 0.05 by t-test analysis. For other details see materials and methods
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4487583&req=5

Fig4: Western blot analysis confirms CAI and CAII as the two most differentially expressed proteins in NSCLC compared to control tissues. One representative western blot image (a) and graphical representation of pixel quantization (b) of CAI and CAII in lung tissues from 3 NSCLC patients (3 with histotype of AC and 1 with histotype of ASC). Each experiment was performed three times in duplicate* = p < 0.05 by t-test analysis. For other details see materials and methods

Mentions: Among proteins identified by MS analysis, we considered and validated carbonic anhydrase I (CAI) and II (CAII) isoforms. In fact, the two isoforms were identified in an intense protein band (MW between 25 kDa and 37 kDa), present in control and almost absent in the NSCLC (Fig. 3, as indicated by arrow); they were then quantified by label-free quantitation analysis. This procedure confirmed the strong over-expression of CAI and CAII (Rsc = 2,10 and Rsc = 3,10, respectively) in the control compared to NSCLC tissues (see Table 2). Western blotting analysis verified the significant under-expression of CAI and CAII proteins in NSCLC tissues compared to the control (Fig. 4a, b).Fig. 4


Differentially expressed and activated proteins associated with non small cell lung cancer tissues.

Nigro E, Imperlini E, Scudiero O, Monaco ML, Polito R, Mazzarella G, Orrù S, Bianco A, Daniele A - Respir. Res. (2015)

Western blot analysis confirms CAI and CAII as the two most differentially expressed proteins in NSCLC compared to control tissues. One representative western blot image (a) and graphical representation of pixel quantization (b) of CAI and CAII in lung tissues from 3 NSCLC patients (3 with histotype of AC and 1 with histotype of ASC). Each experiment was performed three times in duplicate* = p < 0.05 by t-test analysis. For other details see materials and methods
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4487583&req=5

Fig4: Western blot analysis confirms CAI and CAII as the two most differentially expressed proteins in NSCLC compared to control tissues. One representative western blot image (a) and graphical representation of pixel quantization (b) of CAI and CAII in lung tissues from 3 NSCLC patients (3 with histotype of AC and 1 with histotype of ASC). Each experiment was performed three times in duplicate* = p < 0.05 by t-test analysis. For other details see materials and methods
Mentions: Among proteins identified by MS analysis, we considered and validated carbonic anhydrase I (CAI) and II (CAII) isoforms. In fact, the two isoforms were identified in an intense protein band (MW between 25 kDa and 37 kDa), present in control and almost absent in the NSCLC (Fig. 3, as indicated by arrow); they were then quantified by label-free quantitation analysis. This procedure confirmed the strong over-expression of CAI and CAII (Rsc = 2,10 and Rsc = 3,10, respectively) in the control compared to NSCLC tissues (see Table 2). Western blotting analysis verified the significant under-expression of CAI and CAII proteins in NSCLC tissues compared to the control (Fig. 4a, b).Fig. 4

Bottom Line: Subsequently, MS/MS outputs were analyzed by the Protein Discoverer platform for label-free quantitation analysis.Finally, results were confirmed by western blotting analysis.Furthermore, we found significant differential expression of 20 proteins (Rsc ≥ 1.50 or ≤ -1.50) of which 7 are under-expressed and 13 over-expressed in NSCLC lung tissues.

View Article: PubMed Central - PubMed

Affiliation: CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145, Naples, Italy.

ABSTRACT

Background: Lung cancer is a leading cause of mortality. The most common cancer subtype, non small cell lung cancer (NSCLC), accounts for 85-90% all cases and is mainly caused by environmental and genetic factors. Mechanisms involved in lung carcinogenesis include deregulation of several kinases and molecular pathways affecting cell proliferation, apoptosis and differentiation. Despite advances in lung cancer detection, diagnosis and staging, survival rate still remains poor and novel biomarkers for both diagnosis and therapy need to be identified. In the present study, we have explored the potential of novel specific biomarkers in the diagnosis of NSCLC, and the over-expression/activation of several kinases involved in disease development and progression.

Method: Lung tumor tissue specimens and adjacent cancer-free tissues from 8 NSCLC patients undergoing surgery were collected. The differential activation status of ERK1/2, AKT and IKBα/NF-κβ was analyzed. Subsequently, protein expression profile of NSCLC vs normal surrounding tissue was compared by a proteomic approach using LC-MS MS. Subsequently, MS/MS outputs were analyzed by the Protein Discoverer platform for label-free quantitation analysis. Finally, results were confirmed by western blotting analysis.

Results: This study confirms the involvement of ERK1/2, AKT, IKBα and NF-κβ proteins in NSCLC demonstrating a significant over-activation of all tested proteins. Furthermore, we found significant differential expression of 20 proteins (Rsc ≥ 1.50 or ≤ -1.50) of which 7 are under-expressed and 13 over-expressed in NSCLC lung tissues. Finally, we validated, by western blotting, the two most under-expressed NSCLC tissue proteins, carbonic anhydrase I and II isoforms.

Conclusion: Our data further support the possibility of developing both diagnostic tests and innovative targeted therapy in NSCLC. In addition to selective inhibitors of ERK1/2, AKT, IKBα and NF-κβ, as therapeutic options, our data, for the first time, indicates carbonic anhydrase I and II as attractive targets for development of diagnostic tools enabling selection of patients for a more specific therapy in NSCLC.

No MeSH data available.


Related in: MedlinePlus