Limits...
Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform.

Ying L, Zhu Z, Xu Z, He T, Li E, Guo Z, Liu F, Jiang C, Wang Q - PLoS ONE (2015)

Bottom Line: We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF.Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells.Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dailan, China.

ABSTRACT
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening.

No MeSH data available.


Related in: MedlinePlus

The validation in in vivo xenograft model.(A) Representative images of tumor size in different groups of nude mice on the 60th day after treatment. (B) Growth curves in different groups of nude mice. *P<0.05 vs control group, #P<0.05 vs HGF group.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4482748&req=5

pone.0129593.g005: The validation in in vivo xenograft model.(A) Representative images of tumor size in different groups of nude mice on the 60th day after treatment. (B) Growth curves in different groups of nude mice. *P<0.05 vs control group, #P<0.05 vs HGF group.

Mentions: In order to confirm the results from 3D in vitro model, we used in vivo xenograft model to validate. As shown in Fig 5A, the tumor size in HGF group was significantly bigger than that in control group. While PI3K and GRP78 were blocked, the tumor size was reversed. Following treatment with therapeutic drug with paclitaxel, all the tumor volumes in different groups significantly reduced, as compared with that beginning with treatment. However, the mean percentage (27%) of tumor volume reduction in the HGF-treated tumors was obviously less than that of the control (62.7%), HGF+PI3K inhibitor (48.3%) and HGF+GRP78 inhibitor-treated tumors (45.8%) (Fig 5B). The results indicated that HGF induced A549 drug resistance, and PI3K and GRP78 were key factors in the above resistance. Compared to the in vitro results, the similar results were found in in vivo system.


Cancer Associated Fibroblast-Derived Hepatocyte Growth Factor Inhibits the Paclitaxel-Induced Apoptosis of Lung Cancer A549 Cells by Up-Regulating the PI3K/Akt and GRP78 Signaling on a Microfluidic Platform.

Ying L, Zhu Z, Xu Z, He T, Li E, Guo Z, Liu F, Jiang C, Wang Q - PLoS ONE (2015)

The validation in in vivo xenograft model.(A) Representative images of tumor size in different groups of nude mice on the 60th day after treatment. (B) Growth curves in different groups of nude mice. *P<0.05 vs control group, #P<0.05 vs HGF group.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4482748&req=5

pone.0129593.g005: The validation in in vivo xenograft model.(A) Representative images of tumor size in different groups of nude mice on the 60th day after treatment. (B) Growth curves in different groups of nude mice. *P<0.05 vs control group, #P<0.05 vs HGF group.
Mentions: In order to confirm the results from 3D in vitro model, we used in vivo xenograft model to validate. As shown in Fig 5A, the tumor size in HGF group was significantly bigger than that in control group. While PI3K and GRP78 were blocked, the tumor size was reversed. Following treatment with therapeutic drug with paclitaxel, all the tumor volumes in different groups significantly reduced, as compared with that beginning with treatment. However, the mean percentage (27%) of tumor volume reduction in the HGF-treated tumors was obviously less than that of the control (62.7%), HGF+PI3K inhibitor (48.3%) and HGF+GRP78 inhibitor-treated tumors (45.8%) (Fig 5B). The results indicated that HGF induced A549 drug resistance, and PI3K and GRP78 were key factors in the above resistance. Compared to the in vitro results, the similar results were found in in vivo system.

Bottom Line: We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF.Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells.Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells.

View Article: PubMed Central - PubMed

Affiliation: Department of Gastroenterology, the Second Hospital of Dalian Medical University, Dailan, China.

ABSTRACT
Tumor stroma and growth factors provide a survival environment to tumor cells and can modulate their chemoresistance by dysregulating several signal pathways. In this study, we fabricated a three-dimensional (3D) microfluidic chip using polydimethylsiloxane (PDMS) to investigate the impact of hepatocyte growth factor (HGF) from cancer-associated fibroblasts (CAF) on the Met/PI3K/AKT activation, glucose regulatory protein (GRP78) expression and the paclitaxel-induced A549 cell apoptosis. With a concentration gradient generator, the assembled chip was able to reconstruct a tumor microenvironment in vitro. We found high levels of HGF in the supernatants of CAF and the CAF matrix from the supernatants of activated HFL1 fibroblasts or HGF enhanced the levels of Met, PI3K and AKT phosphorylation and GRP78 expression in A549 cells cultured in a 3D cell chamber, which was abrogated by anti-HGF. Inhibition of Met attenuated the CAF matrix-enhanced PI3K/AKT phosphorylation and GRP78 expression while inhibition of PI3K reduced GRP78 expression, but not Met phosphorylation in A549 cells. Inhibition of GRP78 failed to modulate the CAF matrix-enhanced Met/PI3K/AKT phosphorylation in A549 cells. Furthermore, inhibition of PI3K or GRP78 enhanced spontaneous and paclitaxel-induced A549 cell apoptosis. Moreover, treatment with the CAF matrix inhibited spontaneous and medium or high dose of paclitaxel-induced A549 cell apoptosis. Inhibition of PI3K or GRP78 attenuated the CAF matrix-mediated inhibition on paclitaxel-induced A549 cell apoptosis. Our data indicated that HGF in the CAF matrix activated the Met/PI3K/AKT and up-regulated GRP78 expression, promoting chemoresistance to paclitaxel-mediated apoptosis in A549 cells. Our findings suggest that the microfluidic system may represent an ideal platform for signaling research and drug screening.

No MeSH data available.


Related in: MedlinePlus