Limits...
Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

Siebert T, Leichsenring K, Rode C, Wick C, Stutzig N, Schubert H, Blickhan R, Böl M - PLoS ONE (2015)

Bottom Line: Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set.The lowest effect strength for soleus supports the idea that these effects adapt to muscle function.The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages.

View Article: PubMed Central - PubMed

Affiliation: Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.

ABSTRACT
The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages.

No MeSH data available.


Related in: MedlinePlus

Schematic of the rabbit calf muscles.(A) Medial view of the left pelvic limb and the calf muscles whose dynamic muscle properties and architecture have been determined (GAS, PLA, SOL). The grey dashed line marks the transversal cross-section of the limb shown in (B). For the grey muscles (FDL, EDL, and TA), only dynamic muscle properties were determined (see Supporting Information, S1 Text). White muscles (**peronaei muscles, * M. extensor hallucis longus) were not examined. The axes are shown for orientation.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4482742&req=5

pone.0130985.g002: Schematic of the rabbit calf muscles.(A) Medial view of the left pelvic limb and the calf muscles whose dynamic muscle properties and architecture have been determined (GAS, PLA, SOL). The grey dashed line marks the transversal cross-section of the limb shown in (B). For the grey muscles (FDL, EDL, and TA), only dynamic muscle properties were determined (see Supporting Information, S1 Text). White muscles (**peronaei muscles, * M. extensor hallucis longus) were not examined. The axes are shown for orientation.

Mentions: The aim of this study is to provide comprehensive data sets of specific muscle properties (force-length relation, force-velocity relation, force-strain relations of SEC and PEC, activation time constant) and the 3D architecture of the superficial rabbit calf muscles for future research. To achieve this, we determine muscle properties of GAS, PLA, and SOL in in situ experiments (n = 6 per muscle) and measure the 3D architecture by manual digitization ([16]; n = 3 per muscle). Because there is no generally accepted model of history effects, we provide standardized data for force enhancement and force depression (n = 3 per muscle) which can be used to adapt parameters of custom models describing these effects. Striving for completeness with respect to the shank musculature (Fig 2), we provide the muscle properties for further shank muscles (flexor digitorum longus (FDL), extensor digitorum longus (EDL) and tibialis anterior (TA), n = 1).


Three-Dimensional Muscle Architecture and Comprehensive Dynamic Properties of Rabbit Gastrocnemius, Plantaris and Soleus: Input for Simulation Studies.

Siebert T, Leichsenring K, Rode C, Wick C, Stutzig N, Schubert H, Blickhan R, Böl M - PLoS ONE (2015)

Schematic of the rabbit calf muscles.(A) Medial view of the left pelvic limb and the calf muscles whose dynamic muscle properties and architecture have been determined (GAS, PLA, SOL). The grey dashed line marks the transversal cross-section of the limb shown in (B). For the grey muscles (FDL, EDL, and TA), only dynamic muscle properties were determined (see Supporting Information, S1 Text). White muscles (**peronaei muscles, * M. extensor hallucis longus) were not examined. The axes are shown for orientation.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4482742&req=5

pone.0130985.g002: Schematic of the rabbit calf muscles.(A) Medial view of the left pelvic limb and the calf muscles whose dynamic muscle properties and architecture have been determined (GAS, PLA, SOL). The grey dashed line marks the transversal cross-section of the limb shown in (B). For the grey muscles (FDL, EDL, and TA), only dynamic muscle properties were determined (see Supporting Information, S1 Text). White muscles (**peronaei muscles, * M. extensor hallucis longus) were not examined. The axes are shown for orientation.
Mentions: The aim of this study is to provide comprehensive data sets of specific muscle properties (force-length relation, force-velocity relation, force-strain relations of SEC and PEC, activation time constant) and the 3D architecture of the superficial rabbit calf muscles for future research. To achieve this, we determine muscle properties of GAS, PLA, and SOL in in situ experiments (n = 6 per muscle) and measure the 3D architecture by manual digitization ([16]; n = 3 per muscle). Because there is no generally accepted model of history effects, we provide standardized data for force enhancement and force depression (n = 3 per muscle) which can be used to adapt parameters of custom models describing these effects. Striving for completeness with respect to the shank musculature (Fig 2), we provide the muscle properties for further shank muscles (flexor digitorum longus (FDL), extensor digitorum longus (EDL) and tibialis anterior (TA), n = 1).

Bottom Line: Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set.The lowest effect strength for soleus supports the idea that these effects adapt to muscle function.The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages.

View Article: PubMed Central - PubMed

Affiliation: Department of Sport and Motion Science, University of Stuttgart, Stuttgart, Germany.

ABSTRACT
The vastly increasing number of neuro-muscular simulation studies (with increasing numbers of muscles used per simulation) is in sharp contrast to a narrow database of necessary muscle parameters. Simulation results depend heavily on rough parameter estimates often obtained by scaling of one muscle parameter set. However, in vivo muscles differ in their individual properties and architecture. Here we provide a comprehensive dataset of dynamic (n = 6 per muscle) and geometric (three-dimensional architecture, n = 3 per muscle) muscle properties of the rabbit calf muscles gastrocnemius, plantaris, and soleus. For completeness we provide the dynamic muscle properties for further important shank muscles (flexor digitorum longus, extensor digitorum longus, and tibialis anterior; n = 1 per muscle). Maximum shortening velocity (normalized to optimal fiber length) of the gastrocnemius is about twice that of soleus, while plantaris showed an intermediate value. The force-velocity relation is similar for gastrocnemius and plantaris but is much more bent for the soleus. Although the muscles vary greatly in their three-dimensional architecture their mean pennation angle and normalized force-length relationships are almost similar. Forces of the muscles were enhanced in the isometric phase following stretching and were depressed following shortening compared to the corresponding isometric forces. While the enhancement was independent of the ramp velocity, the depression was inversely related to the ramp velocity. The lowest effect strength for soleus supports the idea that these effects adapt to muscle function. The careful acquisition of typical dynamical parameters (e.g. force-length and force-velocity relations, force elongation relations of passive components), enhancement and depression effects, and 3D muscle architecture of calf muscles provides valuable comprehensive datasets for e.g. simulations with neuro-muscular models, development of more realistic muscle models, or simulation of muscle packages.

No MeSH data available.


Related in: MedlinePlus