Limits...
A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?

Ackerly DD, Cornwell WK, Weiss SB, Flint LE, Flint AL - PLoS ONE (2015)

Bottom Line: The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles.Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation.The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia.

View Article: PubMed Central - PubMed

Affiliation: Department of Integrative Biology, University of California, Berkeley, California, United States of America; Jepson Herbarium, University of California, Berkeley, California, United States of America.

ABSTRACT
Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions.

No MeSH data available.


Related in: MedlinePlus

Historical and projected climate means.Thirty year climatic means vs. mean annual temperature for the historic (1951–1980, red) and recent (1981–2010, blue) periods and 54 possible futures (black) based on 18 different model/forcing scenarios and three time periods (2010–2039, 2040–2069, 2070–2099). See values in S3 Table.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4482696&req=5

pone.0130629.g002: Historical and projected climate means.Thirty year climatic means vs. mean annual temperature for the historic (1951–1980, red) and recent (1981–2010, blue) periods and 54 possible futures (black) based on 18 different model/forcing scenarios and three time periods (2010–2039, 2040–2069, 2070–2099). See values in S3 Table.

Mentions: Across the 54 climate futures examined here, mean summer maximum temperatures (June, July, August: JJA) increase up to 6.6°C, winter minimum temperatures (December, January, February: DJF) increase up to 5.8°C, climatic water deficit (CWD) increases up to 176 mm (+22.4%), and precipitation (PPT) varies from –23 to +38% (all values relative to 1951–1980 historical baselines, and based on spatial averages across 1 million sample points in our spatial domain; see Methods). For analysis and visualization, we rank models by their increase in mean annual temperature (MAT), though MAT was not used in the vegetation model. Increases in JJA, DJF, and CWD were all strongly correlated with MAT, while changes in PPT were uncorrelated with MAT (Fig 2).


A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?

Ackerly DD, Cornwell WK, Weiss SB, Flint LE, Flint AL - PLoS ONE (2015)

Historical and projected climate means.Thirty year climatic means vs. mean annual temperature for the historic (1951–1980, red) and recent (1981–2010, blue) periods and 54 possible futures (black) based on 18 different model/forcing scenarios and three time periods (2010–2039, 2040–2069, 2070–2099). See values in S3 Table.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4482696&req=5

pone.0130629.g002: Historical and projected climate means.Thirty year climatic means vs. mean annual temperature for the historic (1951–1980, red) and recent (1981–2010, blue) periods and 54 possible futures (black) based on 18 different model/forcing scenarios and three time periods (2010–2039, 2040–2069, 2070–2099). See values in S3 Table.
Mentions: Across the 54 climate futures examined here, mean summer maximum temperatures (June, July, August: JJA) increase up to 6.6°C, winter minimum temperatures (December, January, February: DJF) increase up to 5.8°C, climatic water deficit (CWD) increases up to 176 mm (+22.4%), and precipitation (PPT) varies from –23 to +38% (all values relative to 1951–1980 historical baselines, and based on spatial averages across 1 million sample points in our spatial domain; see Methods). For analysis and visualization, we rank models by their increase in mean annual temperature (MAT), though MAT was not used in the vegetation model. Increases in JJA, DJF, and CWD were all strongly correlated with MAT, while changes in PPT were uncorrelated with MAT (Fig 2).

Bottom Line: The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles.Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation.The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia.

View Article: PubMed Central - PubMed

Affiliation: Department of Integrative Biology, University of California, Berkeley, California, United States of America; Jepson Herbarium, University of California, Berkeley, California, United States of America.

ABSTRACT
Changes in climate projected for the 21st century are expected to trigger widespread and pervasive biotic impacts. Forecasting these changes and their implications for ecosystem services is a major research goal. Much of the research on biotic responses to climate change has focused on either projected shifts in individual species distributions or broad-scale changes in biome distributions. Here, we introduce a novel application of multinomial logistic regression as a powerful approach to model vegetation distributions and potential responses to 21st century climate change. We modeled the distribution of 22 major vegetation types, most defined by a single dominant woody species, across the San Francisco Bay Area. Predictor variables included climate and topographic variables. The novel aspect of our model is the output: a vector of relative probabilities for each vegetation type in each location within the study domain. The model was then projected for 54 future climate scenarios, spanning a representative range of temperature and precipitation projections from the CMIP3 and CMIP5 ensembles. We found that sensitivity of vegetation to climate change is highly heterogeneous across the region. Surprisingly, sensitivity to climate change is higher closer to the coast, on lower insolation, north-facing slopes and in areas of higher precipitation. While such sites may provide refugia for mesic and cool-adapted vegetation in the face of a warming climate, the model suggests they will still be highly dynamic and relatively sensitive to climate-driven vegetation transitions. The greater sensitivity of moist and low insolation sites is an unexpected outcome that challenges views on the location and stability of climate refugia. Projections provide a foundation for conservation planning and land management, and highlight the need for a greater understanding of the mechanisms and time scales of potential climate-driven vegetation transitions.

No MeSH data available.


Related in: MedlinePlus