Limits...
Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation.

Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH - BMC Genomics (2015)

Bottom Line: Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90.Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. jrtuttle@ncsu.edu.

ABSTRACT

Background: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber.

Results: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.

Conclusions: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

No MeSH data available.


Venn diagram implicating transcripts that may contribute to the extended elongation period of Gb fibers. The three transcript sets compared were: (1) upregulated or unchanged from 21 to 28 DPA in Gb fibers; (2) downregulated from 21 to 28 DPA in Gh fibers; and (3) expressed in both genotypes at 10 DPA during early high-rate elongation. The 1,288 transcripts held in common may support the continued elongation of Gb fiber
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482290&req=5

Fig12: Venn diagram implicating transcripts that may contribute to the extended elongation period of Gb fibers. The three transcript sets compared were: (1) upregulated or unchanged from 21 to 28 DPA in Gb fibers; (2) downregulated from 21 to 28 DPA in Gh fibers; and (3) expressed in both genotypes at 10 DPA during early high-rate elongation. The 1,288 transcripts held in common may support the continued elongation of Gb fiber

Mentions: These three data sets overlapped by 1,288 transcripts (Fig. 12). Of this subset, the transcripts most highly expressed in 28 DPA Gb fibers relative to 28 DPA Gh fibers include ones that encode proteins that can logically support continued elongation: a tonoplast intrinsic protein/aquaporin (AtTIP1;3-like); a pectin (pectate) lyase (At1G04680-like); and a UDP-glycosyltransferase (AtUGT73B4-like) (Additional file 20). For each of these highlighted cases (and others not discussed here), there is no other primary transcript mapping to the same Arabidopsis gene identifier in this Venn intersection set, supporting the possibility that the implicated functions and/or protein isoforms may support prolonged fiber elongation.Fig. 12


Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation.

Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH - BMC Genomics (2015)

Venn diagram implicating transcripts that may contribute to the extended elongation period of Gb fibers. The three transcript sets compared were: (1) upregulated or unchanged from 21 to 28 DPA in Gb fibers; (2) downregulated from 21 to 28 DPA in Gh fibers; and (3) expressed in both genotypes at 10 DPA during early high-rate elongation. The 1,288 transcripts held in common may support the continued elongation of Gb fiber
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482290&req=5

Fig12: Venn diagram implicating transcripts that may contribute to the extended elongation period of Gb fibers. The three transcript sets compared were: (1) upregulated or unchanged from 21 to 28 DPA in Gb fibers; (2) downregulated from 21 to 28 DPA in Gh fibers; and (3) expressed in both genotypes at 10 DPA during early high-rate elongation. The 1,288 transcripts held in common may support the continued elongation of Gb fiber
Mentions: These three data sets overlapped by 1,288 transcripts (Fig. 12). Of this subset, the transcripts most highly expressed in 28 DPA Gb fibers relative to 28 DPA Gh fibers include ones that encode proteins that can logically support continued elongation: a tonoplast intrinsic protein/aquaporin (AtTIP1;3-like); a pectin (pectate) lyase (At1G04680-like); and a UDP-glycosyltransferase (AtUGT73B4-like) (Additional file 20). For each of these highlighted cases (and others not discussed here), there is no other primary transcript mapping to the same Arabidopsis gene identifier in this Venn intersection set, supporting the possibility that the implicated functions and/or protein isoforms may support prolonged fiber elongation.Fig. 12

Bottom Line: Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90.Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

View Article: PubMed Central - PubMed

Affiliation: Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. jrtuttle@ncsu.edu.

ABSTRACT

Background: The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber.

Results: Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA.

Conclusions: The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length.

No MeSH data available.