Limits...
Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.

Chatterjee K, Kuo CW, Chen A, Chen P - J Nanobiotechnology (2015)

Bottom Line: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL.The detection limit for rifampicin was measured as 70 ng/mL.We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan. sanu.hit@gmail.com.

ABSTRACT

Background: Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed.

Results: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine.

Conclusion: We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.

No MeSH data available.


Related in: MedlinePlus

a Test paper for the detection of rifampicin after modification (A) with BSA-Au NCs under UV light. The tenfold diluted urine samples with original rifampicin concentrations are as follows: (B) 0.5 µg/mL (fluorescence quenching ratio = 91% ± 1); (C) 5 µg/mL (82% ± 1.1); (D) 10 µg/mL (81% ± 1.8); (E) 30 µg/mL (79% ± 3.4); (F) 50 µg/mL (78% ± 1.7); (G) 100 µg/mL (75% ± 0.3); (H) 500 µg/mL(73% ± 1.9); and (I) 1000 µg/mL(69% ± 1.1). b Change in the fluorescence quenching ratio of the embedded BSA-Au NCs versus rifampicin concentration on the paper sensor (each data point represents an average of three separate studies (n = 3) in three different wax-printed 96-microplate paper platforms; three measurements were taken in each micro-well, and the error bars denote the standard deviation of the reading).
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482266&req=5

Fig5: a Test paper for the detection of rifampicin after modification (A) with BSA-Au NCs under UV light. The tenfold diluted urine samples with original rifampicin concentrations are as follows: (B) 0.5 µg/mL (fluorescence quenching ratio = 91% ± 1); (C) 5 µg/mL (82% ± 1.1); (D) 10 µg/mL (81% ± 1.8); (E) 30 µg/mL (79% ± 3.4); (F) 50 µg/mL (78% ± 1.7); (G) 100 µg/mL (75% ± 0.3); (H) 500 µg/mL(73% ± 1.9); and (I) 1000 µg/mL(69% ± 1.1). b Change in the fluorescence quenching ratio of the embedded BSA-Au NCs versus rifampicin concentration on the paper sensor (each data point represents an average of three separate studies (n = 3) in three different wax-printed 96-microplate paper platforms; three measurements were taken in each micro-well, and the error bars denote the standard deviation of the reading).

Mentions: Disposable sensors are desirable in point-of-care applications. Therefore, we immobilized BSA-Au NCs on a wax-printed paper-based platform to conduct real-time monitoring of rifampicin in urine. The urine samples were collected from patients at the Tri-Service General Hospital in Taipei, Taiwan. The patients who contributed urine samples signed informed consent forms as required by the regulations of the Institutional Review Board of the Tri-Service General Hospital of Taipei, Taiwan. Initially, 30 µL of the prepared BSA-Au NCs were dropped in each well of the 96-well wax-printed paper platform and dried. The changes observed after the BSA-Au NCs were immobilized on the paper under ultraviolet (UV) light are shown in Figure 5a(A). The images were captured using a digital camera (Olympus, E-330), and the images were processed by MetaMorph software using only the ‘red’ color and center portion of each well to calculate the effective fluorescence intensity quenching ratios. The area without BSA-Au NCs (blank) was used as the background. Pale red fluorescence was clearly observed after immobilization of the BSA-Au NCs on the paper platform. Different amounts of rifampicin were spiked in the collected urine samples, and tenfold diluted urine samples were used for the quantitative analysis.Figure 5


Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.

Chatterjee K, Kuo CW, Chen A, Chen P - J Nanobiotechnology (2015)

a Test paper for the detection of rifampicin after modification (A) with BSA-Au NCs under UV light. The tenfold diluted urine samples with original rifampicin concentrations are as follows: (B) 0.5 µg/mL (fluorescence quenching ratio = 91% ± 1); (C) 5 µg/mL (82% ± 1.1); (D) 10 µg/mL (81% ± 1.8); (E) 30 µg/mL (79% ± 3.4); (F) 50 µg/mL (78% ± 1.7); (G) 100 µg/mL (75% ± 0.3); (H) 500 µg/mL(73% ± 1.9); and (I) 1000 µg/mL(69% ± 1.1). b Change in the fluorescence quenching ratio of the embedded BSA-Au NCs versus rifampicin concentration on the paper sensor (each data point represents an average of three separate studies (n = 3) in three different wax-printed 96-microplate paper platforms; three measurements were taken in each micro-well, and the error bars denote the standard deviation of the reading).
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482266&req=5

Fig5: a Test paper for the detection of rifampicin after modification (A) with BSA-Au NCs under UV light. The tenfold diluted urine samples with original rifampicin concentrations are as follows: (B) 0.5 µg/mL (fluorescence quenching ratio = 91% ± 1); (C) 5 µg/mL (82% ± 1.1); (D) 10 µg/mL (81% ± 1.8); (E) 30 µg/mL (79% ± 3.4); (F) 50 µg/mL (78% ± 1.7); (G) 100 µg/mL (75% ± 0.3); (H) 500 µg/mL(73% ± 1.9); and (I) 1000 µg/mL(69% ± 1.1). b Change in the fluorescence quenching ratio of the embedded BSA-Au NCs versus rifampicin concentration on the paper sensor (each data point represents an average of three separate studies (n = 3) in three different wax-printed 96-microplate paper platforms; three measurements were taken in each micro-well, and the error bars denote the standard deviation of the reading).
Mentions: Disposable sensors are desirable in point-of-care applications. Therefore, we immobilized BSA-Au NCs on a wax-printed paper-based platform to conduct real-time monitoring of rifampicin in urine. The urine samples were collected from patients at the Tri-Service General Hospital in Taipei, Taiwan. The patients who contributed urine samples signed informed consent forms as required by the regulations of the Institutional Review Board of the Tri-Service General Hospital of Taipei, Taiwan. Initially, 30 µL of the prepared BSA-Au NCs were dropped in each well of the 96-well wax-printed paper platform and dried. The changes observed after the BSA-Au NCs were immobilized on the paper under ultraviolet (UV) light are shown in Figure 5a(A). The images were captured using a digital camera (Olympus, E-330), and the images were processed by MetaMorph software using only the ‘red’ color and center portion of each well to calculate the effective fluorescence intensity quenching ratios. The area without BSA-Au NCs (blank) was used as the background. Pale red fluorescence was clearly observed after immobilization of the BSA-Au NCs on the paper platform. Different amounts of rifampicin were spiked in the collected urine samples, and tenfold diluted urine samples were used for the quantitative analysis.Figure 5

Bottom Line: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL.The detection limit for rifampicin was measured as 70 ng/mL.We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan. sanu.hit@gmail.com.

ABSTRACT

Background: Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed.

Results: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine.

Conclusion: We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.

No MeSH data available.


Related in: MedlinePlus