Limits...
Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.

Chatterjee K, Kuo CW, Chen A, Chen P - J Nanobiotechnology (2015)

Bottom Line: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL.The detection limit for rifampicin was measured as 70 ng/mL.We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan. sanu.hit@gmail.com.

ABSTRACT

Background: Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed.

Results: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine.

Conclusion: We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.

No MeSH data available.


Related in: MedlinePlus

a Concentration-dependent quenching of BSA-Au NCs (0.1× dilution) by rifampicin. From higher to lower concentrations: normalized quenching at 823 µg/mL [(F0 − F)/F ~ 22.6 ± 0.68], 411 µg/mL [12.78 ± 0.5], 82 µg/mL [2.8 ± 1.93], 41 µg/mL [1.68 ± 0.16], 8 µg/mL [0.25 ± 0.6], 4 µg/mL [0.23 ± 0.008], 0.8 µg/mL [0.016 ± 0.009], 0.4 µg/mL [0.046 ± 0.031], 0.08 µg/mL [0.017 ± 0.016], and 0.004 µg/mL [0.06 ± 0.04] (each data point represents the average of three separate studies (n = 3), and the error bars denote the standard error of measurements within each experiment). b Plot of the linear region of the normalized decrease in fluorescence intensity of BSA-Au NCs (0.1× dilution) versus rifampicin concentration (each data point represents an average of three separate studies (n = 3); the error bars denote the standard error of measurements within each experiment). The excitation wavelength was set at 480 nm, and the emission wavelength was 640 nm.
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482266&req=5

Fig3: a Concentration-dependent quenching of BSA-Au NCs (0.1× dilution) by rifampicin. From higher to lower concentrations: normalized quenching at 823 µg/mL [(F0 − F)/F ~ 22.6 ± 0.68], 411 µg/mL [12.78 ± 0.5], 82 µg/mL [2.8 ± 1.93], 41 µg/mL [1.68 ± 0.16], 8 µg/mL [0.25 ± 0.6], 4 µg/mL [0.23 ± 0.008], 0.8 µg/mL [0.016 ± 0.009], 0.4 µg/mL [0.046 ± 0.031], 0.08 µg/mL [0.017 ± 0.016], and 0.004 µg/mL [0.06 ± 0.04] (each data point represents the average of three separate studies (n = 3), and the error bars denote the standard error of measurements within each experiment). b Plot of the linear region of the normalized decrease in fluorescence intensity of BSA-Au NCs (0.1× dilution) versus rifampicin concentration (each data point represents an average of three separate studies (n = 3); the error bars denote the standard error of measurements within each experiment). The excitation wavelength was set at 480 nm, and the emission wavelength was 640 nm.

Mentions: With the inherent fluorescence of BSA-Au NCs and its high sensitivity, the synthesized NCs could be used to detect rifampicin via rapid fluorescence quenching. The fluorescence intensity of the BSA-Au NCs decreased proportionally with increases in rifampicin concentration (Additional file 1: Figure S9). As shown in Figure 3a, a nearly linear relationship was observed between the normalized decrease in fluorescence intensity (F0 − F)/F and concentration of rifampicin over a range from 0.5 to 823 µg/mL. However, the normalized decrease in fluorescence intensity reached a plateau when the concentration of rifampicin fell below 0.5 µg/mL.Figure 3


Detection of residual rifampicin in urine via fluorescence quenching of gold nanoclusters on paper.

Chatterjee K, Kuo CW, Chen A, Chen P - J Nanobiotechnology (2015)

a Concentration-dependent quenching of BSA-Au NCs (0.1× dilution) by rifampicin. From higher to lower concentrations: normalized quenching at 823 µg/mL [(F0 − F)/F ~ 22.6 ± 0.68], 411 µg/mL [12.78 ± 0.5], 82 µg/mL [2.8 ± 1.93], 41 µg/mL [1.68 ± 0.16], 8 µg/mL [0.25 ± 0.6], 4 µg/mL [0.23 ± 0.008], 0.8 µg/mL [0.016 ± 0.009], 0.4 µg/mL [0.046 ± 0.031], 0.08 µg/mL [0.017 ± 0.016], and 0.004 µg/mL [0.06 ± 0.04] (each data point represents the average of three separate studies (n = 3), and the error bars denote the standard error of measurements within each experiment). b Plot of the linear region of the normalized decrease in fluorescence intensity of BSA-Au NCs (0.1× dilution) versus rifampicin concentration (each data point represents an average of three separate studies (n = 3); the error bars denote the standard error of measurements within each experiment). The excitation wavelength was set at 480 nm, and the emission wavelength was 640 nm.
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482266&req=5

Fig3: a Concentration-dependent quenching of BSA-Au NCs (0.1× dilution) by rifampicin. From higher to lower concentrations: normalized quenching at 823 µg/mL [(F0 − F)/F ~ 22.6 ± 0.68], 411 µg/mL [12.78 ± 0.5], 82 µg/mL [2.8 ± 1.93], 41 µg/mL [1.68 ± 0.16], 8 µg/mL [0.25 ± 0.6], 4 µg/mL [0.23 ± 0.008], 0.8 µg/mL [0.016 ± 0.009], 0.4 µg/mL [0.046 ± 0.031], 0.08 µg/mL [0.017 ± 0.016], and 0.004 µg/mL [0.06 ± 0.04] (each data point represents the average of three separate studies (n = 3), and the error bars denote the standard error of measurements within each experiment). b Plot of the linear region of the normalized decrease in fluorescence intensity of BSA-Au NCs (0.1× dilution) versus rifampicin concentration (each data point represents an average of three separate studies (n = 3); the error bars denote the standard error of measurements within each experiment). The excitation wavelength was set at 480 nm, and the emission wavelength was 640 nm.
Mentions: With the inherent fluorescence of BSA-Au NCs and its high sensitivity, the synthesized NCs could be used to detect rifampicin via rapid fluorescence quenching. The fluorescence intensity of the BSA-Au NCs decreased proportionally with increases in rifampicin concentration (Additional file 1: Figure S9). As shown in Figure 3a, a nearly linear relationship was observed between the normalized decrease in fluorescence intensity (F0 − F)/F and concentration of rifampicin over a range from 0.5 to 823 µg/mL. However, the normalized decrease in fluorescence intensity reached a plateau when the concentration of rifampicin fell below 0.5 µg/mL.Figure 3

Bottom Line: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL.The detection limit for rifampicin was measured as 70 ng/mL.We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers.

View Article: PubMed Central - PubMed

Affiliation: Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 300, Taiwan. sanu.hit@gmail.com.

ABSTRACT

Background: Rifampicin or rifampin (R) is a common drug used to treat inactive meningitis, cholestatic pruritus and tuberculosis (TB), and it is generally prescribed for long-term administration under regulated dosages. Constant monitoring of rifampicin is important for controlling the side effects and preventing overdose caused by chronic medication. In this study, we present an easy to use, effective and less costly method for detecting residual rifampicin in urine samples using protein (bovine serum albumin, BSA)-stabilized gold nanoclusters (BSA-Au NCs) adsorbed on a paper substrate in which the concentration of rifampicin in urine can be detected via fluorescence quenching. The intensity of the colorimetric assay performed on the paper-based platforms can be easily captured using a digital camera and subsequently analyzed.

Results: The decreased fluorescence intensity of BSA-Au NCs in the presence of rifampicin allows for the sensitive detection of rifampicin in a range from 0.5 to 823 µg/mL. The detection limit for rifampicin was measured as 70 ng/mL. The BSA-Au NCs were immobilized on a wax-printed paper-based platform and used to conduct real-time monitoring of rifampicin in urine.

Conclusion: We have developed a robust, cost-effective, and portable point-of-care medical diagnostic platform for the detection of rifampicin in urine based on the ability of rifampicin to quench the fluorescence of immobilized BSA-Au NCs on wax-printed papers. The paper-based assay can be further used for the detection of other specific analytes via surface modification of the BSA in BSA-Au NCs and offers a useful tool for monitoring other diseases.

No MeSH data available.


Related in: MedlinePlus