Limits...
Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.


DPIV and PC-CMR measurements on the LV physical model during the early and mid-diastolic phases of the cardiac cycle: (a) PC-CMR velocity vectors (b) DPIV streamlines colored with velocity magnitudes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482204&req=5

Fig7: DPIV and PC-CMR measurements on the LV physical model during the early and mid-diastolic phases of the cardiac cycle: (a) PC-CMR velocity vectors (b) DPIV streamlines colored with velocity magnitudes.

Mentions: DPIV was performed on the central long-axis plane of the LV. Figure 7 shows the velocity field from PC-CMR (a) and DPIV (b) of two representative time points during diastole (early and mid-diastole in the cardiac cycle). In both DPIV and PC-CMR velocity fields there was a single central jet is shown from the atrium into the LV with a velocity of about 1.15 m/s. In the DPIV velocity field reconstruction, two counter rotating vortices are observed in the flow field, advecting ahead of the trailing jet. The far field velocity magnitudes are comparatively lower due to lack of mixing with the apical flow, which was expected as the time point is in early vortex ring propagation stage [10, 20]. In PC-CMR velocity field reconstruction, the magnitudes of velocities observed are similar to DPIV both in the early and mid-diastolic phase of the cardiac cycle (Fig. 7). The overall flow structure observed was similar between two modalities; however, the two counter rotating vortices formed during diastole were not well resolved in PC-CMR. This could be due to the relative coarser resolution of PC-CMR. The resolution of DPIV was much greater, hence, it is able to resolve much finer flow structures.Fig. 7


Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

DPIV and PC-CMR measurements on the LV physical model during the early and mid-diastolic phases of the cardiac cycle: (a) PC-CMR velocity vectors (b) DPIV streamlines colored with velocity magnitudes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482204&req=5

Fig7: DPIV and PC-CMR measurements on the LV physical model during the early and mid-diastolic phases of the cardiac cycle: (a) PC-CMR velocity vectors (b) DPIV streamlines colored with velocity magnitudes.
Mentions: DPIV was performed on the central long-axis plane of the LV. Figure 7 shows the velocity field from PC-CMR (a) and DPIV (b) of two representative time points during diastole (early and mid-diastole in the cardiac cycle). In both DPIV and PC-CMR velocity fields there was a single central jet is shown from the atrium into the LV with a velocity of about 1.15 m/s. In the DPIV velocity field reconstruction, two counter rotating vortices are observed in the flow field, advecting ahead of the trailing jet. The far field velocity magnitudes are comparatively lower due to lack of mixing with the apical flow, which was expected as the time point is in early vortex ring propagation stage [10, 20]. In PC-CMR velocity field reconstruction, the magnitudes of velocities observed are similar to DPIV both in the early and mid-diastolic phase of the cardiac cycle (Fig. 7). The overall flow structure observed was similar between two modalities; however, the two counter rotating vortices formed during diastole were not well resolved in PC-CMR. This could be due to the relative coarser resolution of PC-CMR. The resolution of DPIV was much greater, hence, it is able to resolve much finer flow structures.Fig. 7

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.