Limits...
Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.


Locations of the planes (relative to the LV physical model) used for acquiring PC-CMR measurements: (a) shows the plane used for acquiring in plane velocity measurements of the flow through the LV model, and (b) shows the locations of the two planes used for acquiring PC-CMR measurements of normal component of velocity (through-plane) upstream of the mitral and aortic valves.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482204&req=5

Fig6: Locations of the planes (relative to the LV physical model) used for acquiring PC-CMR measurements: (a) shows the plane used for acquiring in plane velocity measurements of the flow through the LV model, and (b) shows the locations of the two planes used for acquiring PC-CMR measurements of normal component of velocity (through-plane) upstream of the mitral and aortic valves.

Mentions: Mitral and aortic valve flows were acquired using 2D PC-CMR sequence, encoding a single velocity direction (through plane). An acquisition using in plane velocity (2 directions) was performed in order to extract the 2D velocity field of the left ventricular outflow tract (LVOT) plane. The imaging planes that were acquired is shown in Fig. 6. The PC-CMR sequence used was a retrospectively ECG-gated gradient echo sequence with a slice thickness of 6 mm and the velocity encoding was 150 cm/s. 20 phases were acquired through the cardiac cycle at each position. A spline interpolation was performed using the inbuilt MATLAB (MathWorks, Natick MA) function in order to match the discretization of the PC-CMR data with that of the flow probes.Fig. 6


Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Locations of the planes (relative to the LV physical model) used for acquiring PC-CMR measurements: (a) shows the plane used for acquiring in plane velocity measurements of the flow through the LV model, and (b) shows the locations of the two planes used for acquiring PC-CMR measurements of normal component of velocity (through-plane) upstream of the mitral and aortic valves.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482204&req=5

Fig6: Locations of the planes (relative to the LV physical model) used for acquiring PC-CMR measurements: (a) shows the plane used for acquiring in plane velocity measurements of the flow through the LV model, and (b) shows the locations of the two planes used for acquiring PC-CMR measurements of normal component of velocity (through-plane) upstream of the mitral and aortic valves.
Mentions: Mitral and aortic valve flows were acquired using 2D PC-CMR sequence, encoding a single velocity direction (through plane). An acquisition using in plane velocity (2 directions) was performed in order to extract the 2D velocity field of the left ventricular outflow tract (LVOT) plane. The imaging planes that were acquired is shown in Fig. 6. The PC-CMR sequence used was a retrospectively ECG-gated gradient echo sequence with a slice thickness of 6 mm and the velocity encoding was 150 cm/s. 20 phases were acquired through the cardiac cycle at each position. A spline interpolation was performed using the inbuilt MATLAB (MathWorks, Natick MA) function in order to match the discretization of the PC-CMR data with that of the flow probes.Fig. 6

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.