Limits...
Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.


Experimental setup of camera, laser and optics used for conducting DPIV measurements on the LV physical model. The laser beam was routed to a plano-convex lens for focusing purpose, followed by a cylindrical lens for generating a light sheet. An arrangement of three mirrors was used for routing the laser beam through the lenses and reflecting the light sheet onto the LV physical model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482204&req=5

Fig4: Experimental setup of camera, laser and optics used for conducting DPIV measurements on the LV physical model. The laser beam was routed to a plano-convex lens for focusing purpose, followed by a cylindrical lens for generating a light sheet. An arrangement of three mirrors was used for routing the laser beam through the lenses and reflecting the light sheet onto the LV physical model.

Mentions: To assess hemodynamics in the laboratory, DPIV was used to quantitatively visualize the flow patterns through a long axis plane of the ventricle corresponding to a 2-chamber long-axis view. Figure 4 shows the schematic of the DPIV set up. The BMHV used in the mitral position was located upstream of the mitral annulus, compared to the placement at the level of the mitral annulus in experiments using other experimental modalities. This change in mitral valve location for DPIV experiments was done to examine the flow through the mitral orifice without including the leaflets. This allowed us to compare to in vivo flow fields from previous studies without being affected by the flow through the “three-jet” orifice characteristic of the SJM Regent BMHV design. This change in mitral valve placement was the only difference in the setup of the LV model between DPIV and all other experimental modalities used in this study. The area of the valveless mitral annulus was 3.0 cm2. The fluid inside the ventricle was seeded with neutrally buoyant fluorescent particles (PMMA with RhB dye, 1–20 lm, Dantec Dynamics; Denmark) and was illuminated using a dual pulsed, 1 mm thick, laser light sheet (Nd:YAG lasers, 17 mJ/pulse, 532 nm, ESI Inc.; Portland, OR). The particles were imaged using a Nikon Micro-Nikkor 60 mm lens attached to a CCD camera (Imager Pro X 2 M, LaVision, Germany, Imager Pro, 1600 × 1200 pixels).Fig. 4


Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Experimental setup of camera, laser and optics used for conducting DPIV measurements on the LV physical model. The laser beam was routed to a plano-convex lens for focusing purpose, followed by a cylindrical lens for generating a light sheet. An arrangement of three mirrors was used for routing the laser beam through the lenses and reflecting the light sheet onto the LV physical model.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482204&req=5

Fig4: Experimental setup of camera, laser and optics used for conducting DPIV measurements on the LV physical model. The laser beam was routed to a plano-convex lens for focusing purpose, followed by a cylindrical lens for generating a light sheet. An arrangement of three mirrors was used for routing the laser beam through the lenses and reflecting the light sheet onto the LV physical model.
Mentions: To assess hemodynamics in the laboratory, DPIV was used to quantitatively visualize the flow patterns through a long axis plane of the ventricle corresponding to a 2-chamber long-axis view. Figure 4 shows the schematic of the DPIV set up. The BMHV used in the mitral position was located upstream of the mitral annulus, compared to the placement at the level of the mitral annulus in experiments using other experimental modalities. This change in mitral valve location for DPIV experiments was done to examine the flow through the mitral orifice without including the leaflets. This allowed us to compare to in vivo flow fields from previous studies without being affected by the flow through the “three-jet” orifice characteristic of the SJM Regent BMHV design. This change in mitral valve placement was the only difference in the setup of the LV model between DPIV and all other experimental modalities used in this study. The area of the valveless mitral annulus was 3.0 cm2. The fluid inside the ventricle was seeded with neutrally buoyant fluorescent particles (PMMA with RhB dye, 1–20 lm, Dantec Dynamics; Denmark) and was illuminated using a dual pulsed, 1 mm thick, laser light sheet (Nd:YAG lasers, 17 mJ/pulse, 532 nm, ESI Inc.; Portland, OR). The particles were imaged using a Nikon Micro-Nikkor 60 mm lens attached to a CCD camera (Imager Pro X 2 M, LaVision, Germany, Imager Pro, 1600 × 1200 pixels).Fig. 4

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.