Limits...
Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.


Experimental setup for conducting stereo-photogrammetry and post-processing: (a) shows the arrangement of the dual high-speed cameras relative to the LV chamber, (b) shows workflow used to process the raw image data and obtain the volumetric reconstruction of the 3D geometry, and (c) shows the calibration target used and its position relative to the cameras.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482204&req=5

Fig3: Experimental setup for conducting stereo-photogrammetry and post-processing: (a) shows the arrangement of the dual high-speed cameras relative to the LV chamber, (b) shows workflow used to process the raw image data and obtain the volumetric reconstruction of the 3D geometry, and (c) shows the calibration target used and its position relative to the cameras.

Mentions: To assess wall motion in the laboratory, dual camera stereo-photogrammetry was performed using two high-speed monochromatic cameras (Model A504K, Basler Vision Technologies, Exton, PA; 1280 × 1024 pixels) with Nikon macro lenses (60 mm, f2.8; Nikon, Melville, NY). A grid of circular markers, with a 4 mm by 4 mm discretization, was printed on one side of the outer surface of the ventricle. Each of the markers was approximately 2 mm in diameter, Fig. 3(a). During experiments, the cameras were externally triggered at the same time as the pulse duplicator system to synchronize the camera images with the hemodynamic (pressures and flow rates) acquisition. 214 time points were acquired during a cardiac cycle for a total of 15 cycles. The 15 cycles of data for each tracked marker point were ensemble averaged to give one cycle.Fig. 3


Cardiovascular magnetic resonance compatible physical model of the left ventricle for multi-modality characterization of wall motion and hemodynamics.

Okafor IU, Santhanakrishnan A, Chaffins BD, Mirabella L, Oshinski JN, Yoganathan AP - J Cardiovasc Magn Reson (2015)

Experimental setup for conducting stereo-photogrammetry and post-processing: (a) shows the arrangement of the dual high-speed cameras relative to the LV chamber, (b) shows workflow used to process the raw image data and obtain the volumetric reconstruction of the 3D geometry, and (c) shows the calibration target used and its position relative to the cameras.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482204&req=5

Fig3: Experimental setup for conducting stereo-photogrammetry and post-processing: (a) shows the arrangement of the dual high-speed cameras relative to the LV chamber, (b) shows workflow used to process the raw image data and obtain the volumetric reconstruction of the 3D geometry, and (c) shows the calibration target used and its position relative to the cameras.
Mentions: To assess wall motion in the laboratory, dual camera stereo-photogrammetry was performed using two high-speed monochromatic cameras (Model A504K, Basler Vision Technologies, Exton, PA; 1280 × 1024 pixels) with Nikon macro lenses (60 mm, f2.8; Nikon, Melville, NY). A grid of circular markers, with a 4 mm by 4 mm discretization, was printed on one side of the outer surface of the ventricle. Each of the markers was approximately 2 mm in diameter, Fig. 3(a). During experiments, the cameras were externally triggered at the same time as the pulse duplicator system to synchronize the camera images with the hemodynamic (pressures and flow rates) acquisition. 214 time points were acquired during a cardiac cycle for a total of 15 cycles. The 15 cycles of data for each tracked marker point were ensemble averaged to give one cycle.Fig. 3

Bottom Line: DPIV and PC-CMR results of the center plane flow within the ventricle matched, both qualitatively and quantitatively, with flow from the atrium into the LV having a velocity of about 1.15 m/s for both modalities.The mean difference between CMR and SP was 5.5 ± 3.7%.The model presented here can thus be used for the purposes of: (a) acquiring CMR data for validation of FSI simulations, (b) determining accuracy of cine-CMR reconstruction methods, and

View Article: PubMed Central - PubMed

Affiliation: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA. iokafor3@gatech.edu.

No MeSH data available.