Limits...
Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily.

Dueholm B, Krieger C, Drew D, Olry A, Kamo T, Taboureau O, Weitzel C, Bourgaud F, Hehn A, Simonsen HT - BMC Evol. Biol. (2015)

Bottom Line: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways.Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ.The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

View Article: PubMed Central - PubMed

Affiliation: University of Copenhagen, Department of Plant and Environmental Science, Copenhagen Plant Science Centre, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark. bjorn.dueholm@mymail.unisa.edu.au.

ABSTRACT

Background: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects.

Results: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ.

Conclusion: Two subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

Show MeSH
Phylogeny tree of 19 full length CYP71AJ. The tree is based on a MUSCLE alignment followed by personal fitting, then a tree building using LG within PhyML. All is performed in Geneious® 6.1.8. Reconstructed ancestral genes were analysed for notes indicated with dots. Alignment can be found in Additional file 4
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4482195&req=5

Fig3: Phylogeny tree of 19 full length CYP71AJ. The tree is based on a MUSCLE alignment followed by personal fitting, then a tree building using LG within PhyML. All is performed in Geneious® 6.1.8. Reconstructed ancestral genes were analysed for notes indicated with dots. Alignment can be found in Additional file 4

Mentions: Phylogenetic analyses of the 19 full-length CYP71AJs revealed that these enzymes are grouped in at least 2 large clades (I and II) including 6 subclades (Fig. 3). Eight enzymes are grouped on a first cluster, which is branched into two parts. The first contains enzymes whose involvement in the synthesis of furanocoumarins was already demonstrated (I-4 and I-3), and the second containing enzymes of unknown functions (I-2). This latter group includes a gene (cyp71aj25) isolated from Thapsia garganica which has been reported not to produce furanocoumarins, giving therefore arguments in favour of a functional diversification of CYP71AJs. The presence, in the same subclade, of genes isolated from D. carota and A. graveolens which are able to produce linear furanocoumarins, is consistent with the assumption that this enzyme subfamily has evolved from ancestral enzymes probably displaying different substrate specificity. Indeed, in this first clade, A. graveolens harbours two divergent coding sequences: CYP71AJ2 which was described as a psoralen synthase (belongs to I-4) and CYP71AJ36 (I-2) for which the function is still unknown.Fig. 3


Evolution of substrate recognition sites (SRSs) in cytochromes P450 from Apiaceae exemplified by the CYP71AJ subfamily.

Dueholm B, Krieger C, Drew D, Olry A, Kamo T, Taboureau O, Weitzel C, Bourgaud F, Hehn A, Simonsen HT - BMC Evol. Biol. (2015)

Phylogeny tree of 19 full length CYP71AJ. The tree is based on a MUSCLE alignment followed by personal fitting, then a tree building using LG within PhyML. All is performed in Geneious® 6.1.8. Reconstructed ancestral genes were analysed for notes indicated with dots. Alignment can be found in Additional file 4
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4482195&req=5

Fig3: Phylogeny tree of 19 full length CYP71AJ. The tree is based on a MUSCLE alignment followed by personal fitting, then a tree building using LG within PhyML. All is performed in Geneious® 6.1.8. Reconstructed ancestral genes were analysed for notes indicated with dots. Alignment can be found in Additional file 4
Mentions: Phylogenetic analyses of the 19 full-length CYP71AJs revealed that these enzymes are grouped in at least 2 large clades (I and II) including 6 subclades (Fig. 3). Eight enzymes are grouped on a first cluster, which is branched into two parts. The first contains enzymes whose involvement in the synthesis of furanocoumarins was already demonstrated (I-4 and I-3), and the second containing enzymes of unknown functions (I-2). This latter group includes a gene (cyp71aj25) isolated from Thapsia garganica which has been reported not to produce furanocoumarins, giving therefore arguments in favour of a functional diversification of CYP71AJs. The presence, in the same subclade, of genes isolated from D. carota and A. graveolens which are able to produce linear furanocoumarins, is consistent with the assumption that this enzyme subfamily has evolved from ancestral enzymes probably displaying different substrate specificity. Indeed, in this first clade, A. graveolens harbours two divergent coding sequences: CYP71AJ2 which was described as a psoralen synthase (belongs to I-4) and CYP71AJ36 (I-2) for which the function is still unknown.Fig. 3

Bottom Line: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways.Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ.The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

View Article: PubMed Central - PubMed

Affiliation: University of Copenhagen, Department of Plant and Environmental Science, Copenhagen Plant Science Centre, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark. bjorn.dueholm@mymail.unisa.edu.au.

ABSTRACT

Background: Large proliferations of cytochrome P450 encoding genes resulting from gene duplications can be termed as 'blooms', providing genetic material for the genesis and evolution of biosynthetic pathways. Furanocoumarins are allelochemicals produced by many of the species in Apiaceaous plants belonging to the Apioideae subfamily of Apiaceae and have been described as being involved in the defence reaction against phytophageous insects.

Results: A bloom in the cytochromes P450 CYP71AJ subfamily has been identified, showing at least 2 clades and 6 subclades within the CYP71AJ subfamily. Two of the subclades were functionally assigned to the biosynthesis of furanocoumarins. Six substrate recognition sites (SRS1-6) important for the enzymatic conversion were investigated in the described cytochromes P450 and display significant variability within the CYP71AJ subfamily. Homology models underline a significant modification of the accession to the iron atom, which might explain the difference of the substrate specificity between the cytochromes P450 restricted to furanocoumarins as substrates and the orphan CYP71AJ.

Conclusion: Two subclades functionally assigned to the biosynthesis of furanocoumarins and four other subclades were identified and shown to be part of two distinct clades within the CYP71AJ subfamily. The subclades show significant variability within their substrate recognition sites between the clades, suggesting different biochemical functions and providing insights into the evolution of cytochrome P450 'blooms' in response to environmental pressures.

Show MeSH