Limits...
Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics.

Ye S, Zhou T, Cheng K, Chen M, Wang Y, Jiang Y, Yang P - Nanoscale Res Lett (2015)

Bottom Line: This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model.Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators.Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

View Article: PubMed Central - PubMed

Affiliation: Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China, yeshefang@xmu.edu.cn.

ABSTRACT
Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (ΔΨm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

No MeSH data available.


Related in: MedlinePlus

a BV-2 cells were treated with 1 μg/mL of LPS for 1 h with or without C60–COOH (50 μM) pretreatment for 6 h, and cell lysates were prepared and subjected to western blotting analysis for phosphorylated and total p38, ERK1/2, and JNK protein expression. b The relative levels of phosphorylated p38, ERK1/2, and JNK expression were performed by densitometric analysis. The data are expressed as the mean ± SD of three independent experiments. *p < 0.05, significantly different from LPS-treated control
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4481245&req=5

Fig7: a BV-2 cells were treated with 1 μg/mL of LPS for 1 h with or without C60–COOH (50 μM) pretreatment for 6 h, and cell lysates were prepared and subjected to western blotting analysis for phosphorylated and total p38, ERK1/2, and JNK protein expression. b The relative levels of phosphorylated p38, ERK1/2, and JNK expression were performed by densitometric analysis. The data are expressed as the mean ± SD of three independent experiments. *p < 0.05, significantly different from LPS-treated control

Mentions: Recent studies showed that mitochondrial ROS governing the LPS-induced pro-inflammatory response in microglia cells is associated with the activation of mitogen-activated protein kinase (MAPK) signaling pathways [38]. Other reports suggest that regulation of LPS-induced mitochondrial ROS is involved in the production of pro-inflammatory mediators in BV-2 microglia cells via NF-κB activation [39]. We, therefore, investigated the effect of C60–COOH on LPS-induced activation of NF-κB and MAPK pathways, which have been reported to associate with excessive mitochondria fission induced by LPS. Western blot analysis of nuclear and cytoplasmic proteins showed that NF-κB p65 translocation from the cytosol to the nucleus was increased in LPS-stimulated BV-2 cells, whereas pretreatment with C60–COOH inhibited NF-κB p65 nuclear localization (Fig. 6a,b). The nuclear translocation of NF-κB p65 from cytosol was confirmed by immunolocalization of anti-NF-κB p65 antibody using confocal microscopy (Fig. 6c). In addition, we examined whether inhibition of mitochondria fission by C60–COOH regulated MAPK signal pathways. Our data showed that C60 significantly inhibited p38 MAPK, ERK1/2, and JNK activation induced by LPS (Fig. 7a, b). This finding is similar to previous studies demonstrating that the inhibition of increasing mitochondrial fission by Mdivi-1, a mitochondrial fission inhibitor, prevents LPS-induced NF-κB and MAPK activation [32]. Our results supported the notion that mitochondrial ROS actively participate in microglia-mediated pathogenesis by altering MAPK kinase cascades and activating transcription factors NF-κB in microglia cells. Neutralization of mitochondrial ROS or suppression of the redox pathway is thus likely to alleviate inflammation. Therefore, findings from the literature along with our data imply a tight association and interplay between mitochondrial fission and ROS-mediated activation of NF-κB and MAPK signaling pathways.Fig. 6


Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics.

Ye S, Zhou T, Cheng K, Chen M, Wang Y, Jiang Y, Yang P - Nanoscale Res Lett (2015)

a BV-2 cells were treated with 1 μg/mL of LPS for 1 h with or without C60–COOH (50 μM) pretreatment for 6 h, and cell lysates were prepared and subjected to western blotting analysis for phosphorylated and total p38, ERK1/2, and JNK protein expression. b The relative levels of phosphorylated p38, ERK1/2, and JNK expression were performed by densitometric analysis. The data are expressed as the mean ± SD of three independent experiments. *p < 0.05, significantly different from LPS-treated control
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4481245&req=5

Fig7: a BV-2 cells were treated with 1 μg/mL of LPS for 1 h with or without C60–COOH (50 μM) pretreatment for 6 h, and cell lysates were prepared and subjected to western blotting analysis for phosphorylated and total p38, ERK1/2, and JNK protein expression. b The relative levels of phosphorylated p38, ERK1/2, and JNK expression were performed by densitometric analysis. The data are expressed as the mean ± SD of three independent experiments. *p < 0.05, significantly different from LPS-treated control
Mentions: Recent studies showed that mitochondrial ROS governing the LPS-induced pro-inflammatory response in microglia cells is associated with the activation of mitogen-activated protein kinase (MAPK) signaling pathways [38]. Other reports suggest that regulation of LPS-induced mitochondrial ROS is involved in the production of pro-inflammatory mediators in BV-2 microglia cells via NF-κB activation [39]. We, therefore, investigated the effect of C60–COOH on LPS-induced activation of NF-κB and MAPK pathways, which have been reported to associate with excessive mitochondria fission induced by LPS. Western blot analysis of nuclear and cytoplasmic proteins showed that NF-κB p65 translocation from the cytosol to the nucleus was increased in LPS-stimulated BV-2 cells, whereas pretreatment with C60–COOH inhibited NF-κB p65 nuclear localization (Fig. 6a,b). The nuclear translocation of NF-κB p65 from cytosol was confirmed by immunolocalization of anti-NF-κB p65 antibody using confocal microscopy (Fig. 6c). In addition, we examined whether inhibition of mitochondria fission by C60–COOH regulated MAPK signal pathways. Our data showed that C60 significantly inhibited p38 MAPK, ERK1/2, and JNK activation induced by LPS (Fig. 7a, b). This finding is similar to previous studies demonstrating that the inhibition of increasing mitochondrial fission by Mdivi-1, a mitochondrial fission inhibitor, prevents LPS-induced NF-κB and MAPK activation [32]. Our results supported the notion that mitochondrial ROS actively participate in microglia-mediated pathogenesis by altering MAPK kinase cascades and activating transcription factors NF-κB in microglia cells. Neutralization of mitochondrial ROS or suppression of the redox pathway is thus likely to alleviate inflammation. Therefore, findings from the literature along with our data imply a tight association and interplay between mitochondrial fission and ROS-mediated activation of NF-κB and MAPK signaling pathways.Fig. 6

Bottom Line: This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model.Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators.Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

View Article: PubMed Central - PubMed

Affiliation: Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China, yeshefang@xmu.edu.cn.

ABSTRACT
Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (ΔΨm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

No MeSH data available.


Related in: MedlinePlus