Limits...
HOTAIR is a therapeutic target in glioblastoma.

Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J, Wang Q, Zhang J, Yang Y, Jiang T, Li M, Kang C - Oncotarget (2015)

Bottom Line: An intracranial animal model was used to confirm that HOTAIR depletion inhibited GBM cell migration/invasion.In the orthotopic model, HOTAIR was required for GBM formation in vivo.In summary, HOTAIR is a potential therapeutic target in GBM.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China.

ABSTRACT
HOTAIR is a negative prognostic factor and is overexpressed in multiple human cancers including glioblastoma multiform (GBM). Survival analysis of Chinese Glioma Genome Atlas (CGGA) patient data indicated that high HOTAIR expression was associated with poor outcome in GBM patients. NLK (Nemo-like kinase), a negative regulator of the β-catenin pathway, was negatively correlated with HOTAIR expression. When the β-catenin pathway was inhibited, GBM cells became susceptible to cell cycle arrest and inhibition of invasion. Introduction of the HOTAIR 5' domain in human glioma-derived astrocytoma induced β-catenin. An intracranial animal model was used to confirm that HOTAIR depletion inhibited GBM cell migration/invasion. In the orthotopic model, HOTAIR was required for GBM formation in vivo. In summary, HOTAIR is a potential therapeutic target in GBM.

No MeSH data available.


Related in: MedlinePlus

HOTAIR regulated the activity of the β-catenin signaling pathway in vitro(A) A TOP flash reporter assay indicated that Lenti-HOTAIR si treatment inhibited β-catenin transcriptional activity (P < 0.01). (B) A TOP flash reporter assay indicated that DZENP treatment inhibited β-catenin transcriptional activity to a greater degree than 2PCPA treatment (P < 0.05). (C) Lenti-HOTAIR si treatment inhibited β-catenin and PKM2 expression and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (D) DZENP treatment inhibited the expression of β-catenin and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (E) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the nucleus lysate in U87 and U87vIII cells. (F) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the cytosol lysate in U87 and U87vIII cells. (G) Treatment with the Lenti-HOTAIR 5′ domain increased the levels of β-catenin and PKM2. (H) Freshly isolated cell lysates (U87 and U87vIII cells infected with Lenti-HOTAIR si or Lenti-NC) were used to immunoprecipitate β-catenin or PKM2 with specific antibodies. Whole immunoglobulin (IgG) was used as a control antibody for immunoprecipitation assays. The immunoprecipitated complexes were subjected to Western blot analysis with specific antibodies against β-catenin and PKM2 as indicated. GAPDH or Histone 2A was used as a loading control. (I) Compared with Lenti-HOTAIR si-treated cells, Lenti-NC-treated cells exhibited higher β-catenin and PKM2 expression in both the cytoplasm and the nucleus (magnification: 1000x).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480757&req=5

Figure 3: HOTAIR regulated the activity of the β-catenin signaling pathway in vitro(A) A TOP flash reporter assay indicated that Lenti-HOTAIR si treatment inhibited β-catenin transcriptional activity (P < 0.01). (B) A TOP flash reporter assay indicated that DZENP treatment inhibited β-catenin transcriptional activity to a greater degree than 2PCPA treatment (P < 0.05). (C) Lenti-HOTAIR si treatment inhibited β-catenin and PKM2 expression and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (D) DZENP treatment inhibited the expression of β-catenin and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (E) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the nucleus lysate in U87 and U87vIII cells. (F) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the cytosol lysate in U87 and U87vIII cells. (G) Treatment with the Lenti-HOTAIR 5′ domain increased the levels of β-catenin and PKM2. (H) Freshly isolated cell lysates (U87 and U87vIII cells infected with Lenti-HOTAIR si or Lenti-NC) were used to immunoprecipitate β-catenin or PKM2 with specific antibodies. Whole immunoglobulin (IgG) was used as a control antibody for immunoprecipitation assays. The immunoprecipitated complexes were subjected to Western blot analysis with specific antibodies against β-catenin and PKM2 as indicated. GAPDH or Histone 2A was used as a loading control. (I) Compared with Lenti-HOTAIR si-treated cells, Lenti-NC-treated cells exhibited higher β-catenin and PKM2 expression in both the cytoplasm and the nucleus (magnification: 1000x).

Mentions: Previous studies indicated that NLK inhibits the β-catenin signaling pathway in glioma. Thus, we next measured whether HOTAIR deletion affect β-catenin transcriptional activity by the TOP/FOP flash reporter plasmid. Compared with Lenti-NC-treated cells, remarkably decreased activity of the β-catenin/TCF4 pathway in Lenti-HOTAIR si-treated cells was detected in both U87 and U87vIII GBM cells (P < 0.05, Figure 3A). DZNEP treatment, rather than 2PCPA, significantly inhibited β-catenin/TCF4 activity by TOP/FOP flash reporter assay (Figure 3B). Western blotting results showed that the Lenti-HOTAIR si plasmid decreased the expression of β-catenin and the levels of p-β-catenin, particularly in whole cell lysate, nucleus and cytosol lysate (Figure 3C, 3E and 3F). More importantly, in DZNEP-treated cells, the levels of β-catenin and p-β-catenin in the nucleus were decreased (Figure 3D). Introducing HOTAIR 5′ domain remarkably increased NLK expression in astrocytoma while introducing HOTAIR 3′ domain didn't (Figure 3G). Nuclear recruitment of PKM2 was required for nuclear accumulation of β-catenin, and in HOTAIR inhibited U87 and U87vIII cells, both IP (Immunoprecipitation) and IF (Immunofluorescence) results indicated that nuclear PKM2 expression was significantly suppressed (Figure 3H, 3I).


HOTAIR is a therapeutic target in glioblastoma.

Zhou X, Ren Y, Zhang J, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J, Wang Q, Zhang J, Yang Y, Jiang T, Li M, Kang C - Oncotarget (2015)

HOTAIR regulated the activity of the β-catenin signaling pathway in vitro(A) A TOP flash reporter assay indicated that Lenti-HOTAIR si treatment inhibited β-catenin transcriptional activity (P < 0.01). (B) A TOP flash reporter assay indicated that DZENP treatment inhibited β-catenin transcriptional activity to a greater degree than 2PCPA treatment (P < 0.05). (C) Lenti-HOTAIR si treatment inhibited β-catenin and PKM2 expression and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (D) DZENP treatment inhibited the expression of β-catenin and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (E) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the nucleus lysate in U87 and U87vIII cells. (F) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the cytosol lysate in U87 and U87vIII cells. (G) Treatment with the Lenti-HOTAIR 5′ domain increased the levels of β-catenin and PKM2. (H) Freshly isolated cell lysates (U87 and U87vIII cells infected with Lenti-HOTAIR si or Lenti-NC) were used to immunoprecipitate β-catenin or PKM2 with specific antibodies. Whole immunoglobulin (IgG) was used as a control antibody for immunoprecipitation assays. The immunoprecipitated complexes were subjected to Western blot analysis with specific antibodies against β-catenin and PKM2 as indicated. GAPDH or Histone 2A was used as a loading control. (I) Compared with Lenti-HOTAIR si-treated cells, Lenti-NC-treated cells exhibited higher β-catenin and PKM2 expression in both the cytoplasm and the nucleus (magnification: 1000x).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480757&req=5

Figure 3: HOTAIR regulated the activity of the β-catenin signaling pathway in vitro(A) A TOP flash reporter assay indicated that Lenti-HOTAIR si treatment inhibited β-catenin transcriptional activity (P < 0.01). (B) A TOP flash reporter assay indicated that DZENP treatment inhibited β-catenin transcriptional activity to a greater degree than 2PCPA treatment (P < 0.05). (C) Lenti-HOTAIR si treatment inhibited β-catenin and PKM2 expression and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (D) DZENP treatment inhibited the expression of β-catenin and decreased p-β-catenin levels in whole cell lysates of U87 and U87vIII cells. (E) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the nucleus lysate in U87 and U87vIII cells. (F) Lenti-HOTAIR si treatment inhibited β-catenin expression and decreased p-β-catenin levels in the cytosol lysate in U87 and U87vIII cells. (G) Treatment with the Lenti-HOTAIR 5′ domain increased the levels of β-catenin and PKM2. (H) Freshly isolated cell lysates (U87 and U87vIII cells infected with Lenti-HOTAIR si or Lenti-NC) were used to immunoprecipitate β-catenin or PKM2 with specific antibodies. Whole immunoglobulin (IgG) was used as a control antibody for immunoprecipitation assays. The immunoprecipitated complexes were subjected to Western blot analysis with specific antibodies against β-catenin and PKM2 as indicated. GAPDH or Histone 2A was used as a loading control. (I) Compared with Lenti-HOTAIR si-treated cells, Lenti-NC-treated cells exhibited higher β-catenin and PKM2 expression in both the cytoplasm and the nucleus (magnification: 1000x).
Mentions: Previous studies indicated that NLK inhibits the β-catenin signaling pathway in glioma. Thus, we next measured whether HOTAIR deletion affect β-catenin transcriptional activity by the TOP/FOP flash reporter plasmid. Compared with Lenti-NC-treated cells, remarkably decreased activity of the β-catenin/TCF4 pathway in Lenti-HOTAIR si-treated cells was detected in both U87 and U87vIII GBM cells (P < 0.05, Figure 3A). DZNEP treatment, rather than 2PCPA, significantly inhibited β-catenin/TCF4 activity by TOP/FOP flash reporter assay (Figure 3B). Western blotting results showed that the Lenti-HOTAIR si plasmid decreased the expression of β-catenin and the levels of p-β-catenin, particularly in whole cell lysate, nucleus and cytosol lysate (Figure 3C, 3E and 3F). More importantly, in DZNEP-treated cells, the levels of β-catenin and p-β-catenin in the nucleus were decreased (Figure 3D). Introducing HOTAIR 5′ domain remarkably increased NLK expression in astrocytoma while introducing HOTAIR 3′ domain didn't (Figure 3G). Nuclear recruitment of PKM2 was required for nuclear accumulation of β-catenin, and in HOTAIR inhibited U87 and U87vIII cells, both IP (Immunoprecipitation) and IF (Immunofluorescence) results indicated that nuclear PKM2 expression was significantly suppressed (Figure 3H, 3I).

Bottom Line: An intracranial animal model was used to confirm that HOTAIR depletion inhibited GBM cell migration/invasion.In the orthotopic model, HOTAIR was required for GBM formation in vivo.In summary, HOTAIR is a potential therapeutic target in GBM.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery, Tianjin Medical University General Hospital, Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin 300052, China.

ABSTRACT
HOTAIR is a negative prognostic factor and is overexpressed in multiple human cancers including glioblastoma multiform (GBM). Survival analysis of Chinese Glioma Genome Atlas (CGGA) patient data indicated that high HOTAIR expression was associated with poor outcome in GBM patients. NLK (Nemo-like kinase), a negative regulator of the β-catenin pathway, was negatively correlated with HOTAIR expression. When the β-catenin pathway was inhibited, GBM cells became susceptible to cell cycle arrest and inhibition of invasion. Introduction of the HOTAIR 5' domain in human glioma-derived astrocytoma induced β-catenin. An intracranial animal model was used to confirm that HOTAIR depletion inhibited GBM cell migration/invasion. In the orthotopic model, HOTAIR was required for GBM formation in vivo. In summary, HOTAIR is a potential therapeutic target in GBM.

No MeSH data available.


Related in: MedlinePlus