Limits...
Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells.

Lindoso RS, Collino F, Camussi G - Oncotarget (2015)

Bottom Line: We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase).Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation.In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Sciences and Molecular Biotechnology Center University of Torino, Torino, Italy.

ABSTRACT
Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

No MeSH data available.


Related in: MedlinePlus

Effects of CSC-EV stimulated MSCs on in vivo tumor growthExperiments were performed in SCID mice that were divided in three groups (6 mice per group): subcutaneous injection of 1×106 K1 tumor cells (TUM); subcutaneous injection of 1×106 K1 tumor cells with 5×105 non-stimulated MSCs (TUM MSC CTR); subcutaneous injection of 1×106 K1 tumor cells with 5×105 2 weeks stimulated MSCs. Tumor growth was evaluated for 40 days and posterior analysis were performed in 5 μm paraffin tumor sections. (A) measurement of tumor growth during 40 days. TUM = gray line; TUM MSC CTR = dotted black line; TUM MSC STI = black line. The inset indicates the tumor weight measured after 40 days and each condition is identified in the abscissa. Representative hematoxylin and eosin staining of sections from the three experimental conditions: (B) TUM condition. (C) TUM MSC CTR condition. (D) TUM MSC CTR STI condition. (E) quantification of PCNA-positive cells in 10 random fields for each section at ×20 magnification. Each condition is indicated in the abscissa. Representative images of PCNA immunohistochemistry: (F) TUM condition. (G) TUM MSC CTR condition. (H) TUM MSC STI condition. (I) quantification of tumor vasculature measured by counting the number of erythrocyte-containing vessels in 10 random fields in trichrome stained tumor sections at original magnification × 20. Each condition is indicated in the abscissa. Representative images of tumor vasculature of the three groups: (J) TUM condition. (K) TUM MSC CTR condition. (L) TUM MSC STI condition. Statistical analysis was performed by ANOVA with Newman-Keuls multicomparison test: *, # indicates statistical difference to the TUM group and TUM MSC CTR group respectively (P < 0.05; n = 6).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480728&req=5

Figure 6: Effects of CSC-EV stimulated MSCs on in vivo tumor growthExperiments were performed in SCID mice that were divided in three groups (6 mice per group): subcutaneous injection of 1×106 K1 tumor cells (TUM); subcutaneous injection of 1×106 K1 tumor cells with 5×105 non-stimulated MSCs (TUM MSC CTR); subcutaneous injection of 1×106 K1 tumor cells with 5×105 2 weeks stimulated MSCs. Tumor growth was evaluated for 40 days and posterior analysis were performed in 5 μm paraffin tumor sections. (A) measurement of tumor growth during 40 days. TUM = gray line; TUM MSC CTR = dotted black line; TUM MSC STI = black line. The inset indicates the tumor weight measured after 40 days and each condition is identified in the abscissa. Representative hematoxylin and eosin staining of sections from the three experimental conditions: (B) TUM condition. (C) TUM MSC CTR condition. (D) TUM MSC CTR STI condition. (E) quantification of PCNA-positive cells in 10 random fields for each section at ×20 magnification. Each condition is indicated in the abscissa. Representative images of PCNA immunohistochemistry: (F) TUM condition. (G) TUM MSC CTR condition. (H) TUM MSC STI condition. (I) quantification of tumor vasculature measured by counting the number of erythrocyte-containing vessels in 10 random fields in trichrome stained tumor sections at original magnification × 20. Each condition is indicated in the abscissa. Representative images of tumor vasculature of the three groups: (J) TUM condition. (K) TUM MSC CTR condition. (L) TUM MSC STI condition. Statistical analysis was performed by ANOVA with Newman-Keuls multicomparison test: *, # indicates statistical difference to the TUM group and TUM MSC CTR group respectively (P < 0.05; n = 6).

Mentions: The size of tumors formed by subcutaneous injection in SCID mice of K1 cells within Matrigel was significantly increased in the presence of 2 week CSC-EV-stimulated MSCs (TUM MSC STI) in respect to tumor alone (TUM) or tumor co-injected with unstimulated MSCs (TUM MSC CTR) (Fig. 6A). Such stimulation in tumor growth was confirmed by measurement of tumor weight (Fig. 6A inset). Histological analysis of tumors revealed a higher cell density of tumor epithelial cells in CSC-EV-stimulated MSCs in respect to unstimulated MSCs but not in respect to tumor alone (Fig 6B, 6C and 6D). Tumor with unstimulated MSCs showed a marked reduction of the epithelial component and an increase in the stroma. The size was slightly but not significantly reduced in respect to tumor alone.


Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells.

Lindoso RS, Collino F, Camussi G - Oncotarget (2015)

Effects of CSC-EV stimulated MSCs on in vivo tumor growthExperiments were performed in SCID mice that were divided in three groups (6 mice per group): subcutaneous injection of 1×106 K1 tumor cells (TUM); subcutaneous injection of 1×106 K1 tumor cells with 5×105 non-stimulated MSCs (TUM MSC CTR); subcutaneous injection of 1×106 K1 tumor cells with 5×105 2 weeks stimulated MSCs. Tumor growth was evaluated for 40 days and posterior analysis were performed in 5 μm paraffin tumor sections. (A) measurement of tumor growth during 40 days. TUM = gray line; TUM MSC CTR = dotted black line; TUM MSC STI = black line. The inset indicates the tumor weight measured after 40 days and each condition is identified in the abscissa. Representative hematoxylin and eosin staining of sections from the three experimental conditions: (B) TUM condition. (C) TUM MSC CTR condition. (D) TUM MSC CTR STI condition. (E) quantification of PCNA-positive cells in 10 random fields for each section at ×20 magnification. Each condition is indicated in the abscissa. Representative images of PCNA immunohistochemistry: (F) TUM condition. (G) TUM MSC CTR condition. (H) TUM MSC STI condition. (I) quantification of tumor vasculature measured by counting the number of erythrocyte-containing vessels in 10 random fields in trichrome stained tumor sections at original magnification × 20. Each condition is indicated in the abscissa. Representative images of tumor vasculature of the three groups: (J) TUM condition. (K) TUM MSC CTR condition. (L) TUM MSC STI condition. Statistical analysis was performed by ANOVA with Newman-Keuls multicomparison test: *, # indicates statistical difference to the TUM group and TUM MSC CTR group respectively (P < 0.05; n = 6).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480728&req=5

Figure 6: Effects of CSC-EV stimulated MSCs on in vivo tumor growthExperiments were performed in SCID mice that were divided in three groups (6 mice per group): subcutaneous injection of 1×106 K1 tumor cells (TUM); subcutaneous injection of 1×106 K1 tumor cells with 5×105 non-stimulated MSCs (TUM MSC CTR); subcutaneous injection of 1×106 K1 tumor cells with 5×105 2 weeks stimulated MSCs. Tumor growth was evaluated for 40 days and posterior analysis were performed in 5 μm paraffin tumor sections. (A) measurement of tumor growth during 40 days. TUM = gray line; TUM MSC CTR = dotted black line; TUM MSC STI = black line. The inset indicates the tumor weight measured after 40 days and each condition is identified in the abscissa. Representative hematoxylin and eosin staining of sections from the three experimental conditions: (B) TUM condition. (C) TUM MSC CTR condition. (D) TUM MSC CTR STI condition. (E) quantification of PCNA-positive cells in 10 random fields for each section at ×20 magnification. Each condition is indicated in the abscissa. Representative images of PCNA immunohistochemistry: (F) TUM condition. (G) TUM MSC CTR condition. (H) TUM MSC STI condition. (I) quantification of tumor vasculature measured by counting the number of erythrocyte-containing vessels in 10 random fields in trichrome stained tumor sections at original magnification × 20. Each condition is indicated in the abscissa. Representative images of tumor vasculature of the three groups: (J) TUM condition. (K) TUM MSC CTR condition. (L) TUM MSC STI condition. Statistical analysis was performed by ANOVA with Newman-Keuls multicomparison test: *, # indicates statistical difference to the TUM group and TUM MSC CTR group respectively (P < 0.05; n = 6).
Mentions: The size of tumors formed by subcutaneous injection in SCID mice of K1 cells within Matrigel was significantly increased in the presence of 2 week CSC-EV-stimulated MSCs (TUM MSC STI) in respect to tumor alone (TUM) or tumor co-injected with unstimulated MSCs (TUM MSC CTR) (Fig. 6A). Such stimulation in tumor growth was confirmed by measurement of tumor weight (Fig. 6A inset). Histological analysis of tumors revealed a higher cell density of tumor epithelial cells in CSC-EV-stimulated MSCs in respect to unstimulated MSCs but not in respect to tumor alone (Fig 6B, 6C and 6D). Tumor with unstimulated MSCs showed a marked reduction of the epithelial component and an increase in the stroma. The size was slightly but not significantly reduced in respect to tumor alone.

Bottom Line: We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase).Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation.In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Sciences and Molecular Biotechnology Center University of Torino, Torino, Italy.

ABSTRACT
Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

No MeSH data available.


Related in: MedlinePlus