Limits...
Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells.

Lindoso RS, Collino F, Camussi G - Oncotarget (2015)

Bottom Line: We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase).Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation.In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Sciences and Molecular Biotechnology Center University of Torino, Torino, Italy.

ABSTRACT
Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

No MeSH data available.


Related in: MedlinePlus

Changes in gene expression modulated by CSC-EV stimulationThe expression of a group of selected genes associated with migration process was measured after CSC-EV stimulation. White bars represent non-stimulated MSCs as control group, black bars indicate CSC-EV stimulated MSCs. (A) modulation of gene expression in MSCs stimulated for 72 h. (B) modulation of gene expression in MSCs stimulated for 2 weeks. (C) modulation of gene expression in MSCs cultured for 2 additional weeks, (D) 3 additional weeks and (E) 4 additional weeks in the absence of CSC-EVs after 2 week stimulation. Data are expressed as RQ, normalized to GAPDH. Statistical analysis was performed by t-test: * indicates statistical difference in respect to control group (P < 0.05; n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480728&req=5

Figure 3: Changes in gene expression modulated by CSC-EV stimulationThe expression of a group of selected genes associated with migration process was measured after CSC-EV stimulation. White bars represent non-stimulated MSCs as control group, black bars indicate CSC-EV stimulated MSCs. (A) modulation of gene expression in MSCs stimulated for 72 h. (B) modulation of gene expression in MSCs stimulated for 2 weeks. (C) modulation of gene expression in MSCs cultured for 2 additional weeks, (D) 3 additional weeks and (E) 4 additional weeks in the absence of CSC-EVs after 2 week stimulation. Data are expressed as RQ, normalized to GAPDH. Statistical analysis was performed by t-test: * indicates statistical difference in respect to control group (P < 0.05; n = 5).

Mentions: The increase of MSC migration led us to investigate the modulation of genes related to the migration process such as matrix metalloproteinases (MMP1, MMP2 and MMP3), collagens (COL3A1 and COL4A3) and CXCR4 and CXCR7. The analyses were performed in MSC stimulated with CSC-EVs for 72 hours or 2 weeks (Fig. 3A and 3B, respectively). After 72 hours of stimulus, the expression of MMP1, MMP3 and CXCR4 were significantly increased (black bars) when compared with unstimulated control MSCs (white bars). After 2 week-stimulation, a significant increase of MMP1, MMP3, CXCR4, MMP2, COL4A3 and CXCR7 was observed (Fig. 3B). To determine if the changes in gene expression were maintained in absence of persistent CSC-EV stimulation, we kept the 2 week-stimulated MSCs in culture for 2 additional weeks in normal medium without stimulus (Fig. 3C). The results obtained demonstrated the persistence of phenotypic changes observed in stimulated MSCs. Analysis of longer periods (3 and 4 weeks after MSC stimulation) showed a reversal expression of altered genes (Fig. 3D and 3E).


Extracellular vesicles derived from renal cancer stem cells induce a pro-tumorigenic phenotype in mesenchymal stromal cells.

Lindoso RS, Collino F, Camussi G - Oncotarget (2015)

Changes in gene expression modulated by CSC-EV stimulationThe expression of a group of selected genes associated with migration process was measured after CSC-EV stimulation. White bars represent non-stimulated MSCs as control group, black bars indicate CSC-EV stimulated MSCs. (A) modulation of gene expression in MSCs stimulated for 72 h. (B) modulation of gene expression in MSCs stimulated for 2 weeks. (C) modulation of gene expression in MSCs cultured for 2 additional weeks, (D) 3 additional weeks and (E) 4 additional weeks in the absence of CSC-EVs after 2 week stimulation. Data are expressed as RQ, normalized to GAPDH. Statistical analysis was performed by t-test: * indicates statistical difference in respect to control group (P < 0.05; n = 5).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480728&req=5

Figure 3: Changes in gene expression modulated by CSC-EV stimulationThe expression of a group of selected genes associated with migration process was measured after CSC-EV stimulation. White bars represent non-stimulated MSCs as control group, black bars indicate CSC-EV stimulated MSCs. (A) modulation of gene expression in MSCs stimulated for 72 h. (B) modulation of gene expression in MSCs stimulated for 2 weeks. (C) modulation of gene expression in MSCs cultured for 2 additional weeks, (D) 3 additional weeks and (E) 4 additional weeks in the absence of CSC-EVs after 2 week stimulation. Data are expressed as RQ, normalized to GAPDH. Statistical analysis was performed by t-test: * indicates statistical difference in respect to control group (P < 0.05; n = 5).
Mentions: The increase of MSC migration led us to investigate the modulation of genes related to the migration process such as matrix metalloproteinases (MMP1, MMP2 and MMP3), collagens (COL3A1 and COL4A3) and CXCR4 and CXCR7. The analyses were performed in MSC stimulated with CSC-EVs for 72 hours or 2 weeks (Fig. 3A and 3B, respectively). After 72 hours of stimulus, the expression of MMP1, MMP3 and CXCR4 were significantly increased (black bars) when compared with unstimulated control MSCs (white bars). After 2 week-stimulation, a significant increase of MMP1, MMP3, CXCR4, MMP2, COL4A3 and CXCR7 was observed (Fig. 3B). To determine if the changes in gene expression were maintained in absence of persistent CSC-EV stimulation, we kept the 2 week-stimulated MSCs in culture for 2 additional weeks in normal medium without stimulus (Fig. 3C). The results obtained demonstrated the persistence of phenotypic changes observed in stimulated MSCs. Analysis of longer periods (3 and 4 weeks after MSC stimulation) showed a reversal expression of altered genes (Fig. 3D and 3E).

Bottom Line: We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase).Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation.In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

View Article: PubMed Central - PubMed

Affiliation: Department of Medical Sciences and Molecular Biotechnology Center University of Torino, Torino, Italy.

ABSTRACT
Renal carcinomas have been shown to contain a population of cancer stem cells (CSCs) that present self-renewing capacity and support tumor growth and metastasis. CSCs were shown to secrete large amount of extracellular vesicles (EVs) that can transfer several molecules (proteins, lipids and nucleic acids) and induce epigenetic changes in target cells. Mesenchymal Stromal Cells (MSCs) are susceptible to tumor signalling and can be recruited to tumor regions. The precise role of MSCs in tumor development is still under debate since both pro- and anti-tumorigenic effects have been reported. In this study we analysed the participation of renal CSC-derived EVs in the interaction between tumor and MSCs. We found that CSC-derived EVs promoted persistent phenotypical changes in MSCs characterized by an increased expression of genes associated with cell migration (CXCR4, CXCR7), matrix remodeling (COL4A3), angiogenesis and tumor growth (IL-8, Osteopontin and Myeloperoxidase). EV-stimulated MSCs exhibited in vitro an enhancement of migration toward the tumor conditioned medium. Moreover, EV-stimulated MSCs enhanced migration of renal tumor cells and induced vessel-like formation. In vivo, EV-stimulated MSCs supported tumor development and vascularization, when co-injected with renal tumor cells. In conclusion, CSC-derived EVs induced phenotypical changes in MSCs that are associated with tumor growth.

No MeSH data available.


Related in: MedlinePlus