Limits...
Downregulation of miR-432 activates Wnt/β-catenin signaling and promotes human hepatocellular carcinoma proliferation.

Jiang N, Chen WJ, Zhang JW, Xu C, Zeng XC, Zhang T, Li Y, Wang GY - Oncotarget (2015)

Bottom Line: Sustained cell growth and proliferation, one of the hallmarks of cancer, is considered to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation.Elucidating the molecular mechanism of this abnormality in hepatocellular carcinoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy.Furthermore, miR-432 directly targeted and suppressed multiple regulators of the Wnt/β-catenin signaling cascade, including LRP6, TRIM29 and Pygo2, which subsequently deactivated Wnt/β-catenin signaling pathway.

View Article: PubMed Central - PubMed

Affiliation: Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.

ABSTRACT
Sustained cell growth and proliferation, one of the hallmarks of cancer, is considered to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation. Aberrant activation of the Wnt/β-catenin signaling pathway leads to cell proliferation, growth and survival, and promotes the development of various human tumors, including hepatocellular carcinoma. Elucidating the molecular mechanism of this abnormality in hepatocellular carcinoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy. Herein, we report that the expression of miR-432 was markedly downregulated in hepatocellular carcinoma cell lines and tissues, and upregulation of miR-432 inhibited, whereas downregulation of miR-432 enhanced the proliferation and tumorigenicity of hepatocellular carcinoma cells both in vitro and in vivo. Furthermore, miR-432 directly targeted and suppressed multiple regulators of the Wnt/β-catenin signaling cascade, including LRP6, TRIM29 and Pygo2, which subsequently deactivated Wnt/β-catenin signaling pathway. Finally, miR-432 expression was inversely correlated with three targets in clinical hepatocellular carcinoma samples. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA by suppressing Wnt/β-catenin signaling activation and may represent a therapeutic target for hepatocellular carcinoma.

No MeSH data available.


Related in: MedlinePlus

Inhibiting miR-432 expression enhanced HCC cell proliferation(A). MTT analysis of the proliferation ability of HCC cells transfected with miR-432-in or NC. (B). Representative micrographs (left) and quantification (right) of HCC cell colonies in indicated HCC cell lines, as determined by colony formation assay. (C). Tumorigenicity of HCC cells transfected with miR-432-in or negative control (NC) was measured by anchorage-independent growth ability assay. Colonies larger than 0.1 mm in diameter were scored. (D). Representative micrographs (left) and quantification of BrdU positive signaling in the cells transfected with miR-432-in or NC. (E). Flow cytometry analysis of indicated HCC cells transfected with miR-432-in or NC. Each bar represents the mean ± SD of three independent experiments. * P < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480722&req=5

Figure 3: Inhibiting miR-432 expression enhanced HCC cell proliferation(A). MTT analysis of the proliferation ability of HCC cells transfected with miR-432-in or NC. (B). Representative micrographs (left) and quantification (right) of HCC cell colonies in indicated HCC cell lines, as determined by colony formation assay. (C). Tumorigenicity of HCC cells transfected with miR-432-in or negative control (NC) was measured by anchorage-independent growth ability assay. Colonies larger than 0.1 mm in diameter were scored. (D). Representative micrographs (left) and quantification of BrdU positive signaling in the cells transfected with miR-432-in or NC. (E). Flow cytometry analysis of indicated HCC cells transfected with miR-432-in or NC. Each bar represents the mean ± SD of three independent experiments. * P < 0.05.

Mentions: We further examined the effect of miR-432 inhibition on HCC cell proliferation. Consistent with the overexpression results, MTT and colony formation assays showed that miR-432 suppression dramatically increased the growth rate of both miR-432 overexpression cells compared with that of control cells transfected with negative control (NC) (Supplemental Figure 1, Figure 3A and 3B). In addition, the anchorage-independent growth ability of QGY-7703 and HepG2 HCC cells was significantly increased in response to miR-432 inhibitor (Figure 3C). Furthermore, we found that transfection of miR-432 inhibitor drastically increased the percentage of cells in the S peak but decreased that in the G0/G1 peak (Figure 3D and 3E). Taken together, these results suggest that miR-432 downregulation promotes the proliferation of HCC cells in vitro.


Downregulation of miR-432 activates Wnt/β-catenin signaling and promotes human hepatocellular carcinoma proliferation.

Jiang N, Chen WJ, Zhang JW, Xu C, Zeng XC, Zhang T, Li Y, Wang GY - Oncotarget (2015)

Inhibiting miR-432 expression enhanced HCC cell proliferation(A). MTT analysis of the proliferation ability of HCC cells transfected with miR-432-in or NC. (B). Representative micrographs (left) and quantification (right) of HCC cell colonies in indicated HCC cell lines, as determined by colony formation assay. (C). Tumorigenicity of HCC cells transfected with miR-432-in or negative control (NC) was measured by anchorage-independent growth ability assay. Colonies larger than 0.1 mm in diameter were scored. (D). Representative micrographs (left) and quantification of BrdU positive signaling in the cells transfected with miR-432-in or NC. (E). Flow cytometry analysis of indicated HCC cells transfected with miR-432-in or NC. Each bar represents the mean ± SD of three independent experiments. * P < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480722&req=5

Figure 3: Inhibiting miR-432 expression enhanced HCC cell proliferation(A). MTT analysis of the proliferation ability of HCC cells transfected with miR-432-in or NC. (B). Representative micrographs (left) and quantification (right) of HCC cell colonies in indicated HCC cell lines, as determined by colony formation assay. (C). Tumorigenicity of HCC cells transfected with miR-432-in or negative control (NC) was measured by anchorage-independent growth ability assay. Colonies larger than 0.1 mm in diameter were scored. (D). Representative micrographs (left) and quantification of BrdU positive signaling in the cells transfected with miR-432-in or NC. (E). Flow cytometry analysis of indicated HCC cells transfected with miR-432-in or NC. Each bar represents the mean ± SD of three independent experiments. * P < 0.05.
Mentions: We further examined the effect of miR-432 inhibition on HCC cell proliferation. Consistent with the overexpression results, MTT and colony formation assays showed that miR-432 suppression dramatically increased the growth rate of both miR-432 overexpression cells compared with that of control cells transfected with negative control (NC) (Supplemental Figure 1, Figure 3A and 3B). In addition, the anchorage-independent growth ability of QGY-7703 and HepG2 HCC cells was significantly increased in response to miR-432 inhibitor (Figure 3C). Furthermore, we found that transfection of miR-432 inhibitor drastically increased the percentage of cells in the S peak but decreased that in the G0/G1 peak (Figure 3D and 3E). Taken together, these results suggest that miR-432 downregulation promotes the proliferation of HCC cells in vitro.

Bottom Line: Sustained cell growth and proliferation, one of the hallmarks of cancer, is considered to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation.Elucidating the molecular mechanism of this abnormality in hepatocellular carcinoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy.Furthermore, miR-432 directly targeted and suppressed multiple regulators of the Wnt/β-catenin signaling cascade, including LRP6, TRIM29 and Pygo2, which subsequently deactivated Wnt/β-catenin signaling pathway.

View Article: PubMed Central - PubMed

Affiliation: Department of Hepatic Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.

ABSTRACT
Sustained cell growth and proliferation, one of the hallmarks of cancer, is considered to responsible for cancer-related deaths by disorganizing the balance of growth promotion and growth limitation. Aberrant activation of the Wnt/β-catenin signaling pathway leads to cell proliferation, growth and survival, and promotes the development of various human tumors, including hepatocellular carcinoma. Elucidating the molecular mechanism of this abnormality in hepatocellular carcinoma carcinogenesis may improve diagnostic and therapeutic strategies for this malignancy. Herein, we report that the expression of miR-432 was markedly downregulated in hepatocellular carcinoma cell lines and tissues, and upregulation of miR-432 inhibited, whereas downregulation of miR-432 enhanced the proliferation and tumorigenicity of hepatocellular carcinoma cells both in vitro and in vivo. Furthermore, miR-432 directly targeted and suppressed multiple regulators of the Wnt/β-catenin signaling cascade, including LRP6, TRIM29 and Pygo2, which subsequently deactivated Wnt/β-catenin signaling pathway. Finally, miR-432 expression was inversely correlated with three targets in clinical hepatocellular carcinoma samples. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA by suppressing Wnt/β-catenin signaling activation and may represent a therapeutic target for hepatocellular carcinoma.

No MeSH data available.


Related in: MedlinePlus