Limits...
A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells.

Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, Miao M, Gu J, Pan H, Yang F, Li T, Liu XY, Li R - Oncotarget (2015)

Bottom Line: Androgen-responsive genes involved in PCa progression including NED remain largely unknown.Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells.Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
Androgen deprivation therapy in prostate cancer (PCa) causes neuroendocrine differentiation (NED) of prostatic adenocarcinomas (PAC) cells, leading to recurrence of PCa. Androgen-responsive genes involved in PCa progression including NED remain largely unknown. Here we demonstrated the importance of androgen receptor (AR)-microRNA-204 (miR-204)-XRN1 axis in PCa cell lines and the rat ventral prostate. Androgens downregulate miR-204, resulting in induction of XRN1 (5'-3' exoribonuclease 1), which we identified as a miR-204 target. miR-204 acts as a tumor suppressor in two PAC cell lines (LNCaP and 22Rv1) and as an oncomiR in two neuroendocrine-like prostate cancer (NEPC) cell lines (PC-3 and CL1). Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells. Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1. Thus we revealed the AR-miR-204-XRN1-miR-34a positive feedback loop and a dual function of miR-204/XRN1 axis in prostate cancer.

No MeSH data available.


Related in: MedlinePlus

XRN1, as a miR-204 target, is a dual regulator of PCa cell growth(A) Luciferase assay of the reporter gene with wild-type (WT) or mutant (MU) 3′-UTR of XRN1 in LNCaP cells infected with or without miR-204-expressing lentivirus. (B) Western blot analysis of XRN1 expression in PCa cells in the presence of ectopic expression of miR-204 as indicated. (C) Levels of XRN1 mRNA in LNCaP and CL1 cells transfected with the miR-204 inhibitor or control oligonucleotides. (D) Western blot analysis of XRN1 expression in PAC cells with knockdown of AR. LNCaP and 22Rv1 cells were transfected with AR-siRNA or control RNA duplex. (E) Western blot analysis of the effect of miR-204 overexpression on regulation of XRN1 expression by androgen in LNCaP cells. (F) Western blot analysis of XRN1 in PCa cells transfected with XRN1 siRNA. (G and H) Effect of silencing of XRN1 on cell growth (G) and clonogenicity (H) of PCa cells. The data were obtained from at least three independent experiments, and the values are shown as the mean ± SEM; * p< 0.05; **p<0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480709&req=5

Figure 3: XRN1, as a miR-204 target, is a dual regulator of PCa cell growth(A) Luciferase assay of the reporter gene with wild-type (WT) or mutant (MU) 3′-UTR of XRN1 in LNCaP cells infected with or without miR-204-expressing lentivirus. (B) Western blot analysis of XRN1 expression in PCa cells in the presence of ectopic expression of miR-204 as indicated. (C) Levels of XRN1 mRNA in LNCaP and CL1 cells transfected with the miR-204 inhibitor or control oligonucleotides. (D) Western blot analysis of XRN1 expression in PAC cells with knockdown of AR. LNCaP and 22Rv1 cells were transfected with AR-siRNA or control RNA duplex. (E) Western blot analysis of the effect of miR-204 overexpression on regulation of XRN1 expression by androgen in LNCaP cells. (F) Western blot analysis of XRN1 in PCa cells transfected with XRN1 siRNA. (G and H) Effect of silencing of XRN1 on cell growth (G) and clonogenicity (H) of PCa cells. The data were obtained from at least three independent experiments, and the values are shown as the mean ± SEM; * p< 0.05; **p<0.01.

Mentions: XRN1 (5′-3′ exoribonuclease 1) was inferred as a potential target of miR-204 via the algorithms of TargetScan 5.2 (http://targetscan.org/), PicTar (http://pictar.mdc-berlin.de/), and DIANA-microT v3.0 (http://diana.cslab.ece.ntua.gr/microT/). To validate it, a luciferase reporter construct was generated by cloning a 562-bp-long 3′-UTR of XRN1 mRNA downstream of the Renilla luciferase gene. Subsequently, our assay indicated that the luciferase activity in this reporter was inhibited by 47.8% in LNCaP cells (Fig. 3A). Futhermore, the mutations introduced to the miR-204-pairing sequence in 3-UTR of XRN1 almost reversed the inhibition of luciferase activity by miR-204 (Fig. 3A), indicating that miR-204 directly targeted the 3′-UTR of XRN1. In support of this, ectopic expression of miR-204 lowered the level of XRN1 protein in all the PCa cell lines tested (Fig. 3B), whereas introduction of the miR-204 inhibitor raised level of XRN1mRNA (Fig. 3C), suggesting that miR-204 is a repressor of XRN1 expression in PCa cells.


A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells.

Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, Miao M, Gu J, Pan H, Yang F, Li T, Liu XY, Li R - Oncotarget (2015)

XRN1, as a miR-204 target, is a dual regulator of PCa cell growth(A) Luciferase assay of the reporter gene with wild-type (WT) or mutant (MU) 3′-UTR of XRN1 in LNCaP cells infected with or without miR-204-expressing lentivirus. (B) Western blot analysis of XRN1 expression in PCa cells in the presence of ectopic expression of miR-204 as indicated. (C) Levels of XRN1 mRNA in LNCaP and CL1 cells transfected with the miR-204 inhibitor or control oligonucleotides. (D) Western blot analysis of XRN1 expression in PAC cells with knockdown of AR. LNCaP and 22Rv1 cells were transfected with AR-siRNA or control RNA duplex. (E) Western blot analysis of the effect of miR-204 overexpression on regulation of XRN1 expression by androgen in LNCaP cells. (F) Western blot analysis of XRN1 in PCa cells transfected with XRN1 siRNA. (G and H) Effect of silencing of XRN1 on cell growth (G) and clonogenicity (H) of PCa cells. The data were obtained from at least three independent experiments, and the values are shown as the mean ± SEM; * p< 0.05; **p<0.01.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480709&req=5

Figure 3: XRN1, as a miR-204 target, is a dual regulator of PCa cell growth(A) Luciferase assay of the reporter gene with wild-type (WT) or mutant (MU) 3′-UTR of XRN1 in LNCaP cells infected with or without miR-204-expressing lentivirus. (B) Western blot analysis of XRN1 expression in PCa cells in the presence of ectopic expression of miR-204 as indicated. (C) Levels of XRN1 mRNA in LNCaP and CL1 cells transfected with the miR-204 inhibitor or control oligonucleotides. (D) Western blot analysis of XRN1 expression in PAC cells with knockdown of AR. LNCaP and 22Rv1 cells were transfected with AR-siRNA or control RNA duplex. (E) Western blot analysis of the effect of miR-204 overexpression on regulation of XRN1 expression by androgen in LNCaP cells. (F) Western blot analysis of XRN1 in PCa cells transfected with XRN1 siRNA. (G and H) Effect of silencing of XRN1 on cell growth (G) and clonogenicity (H) of PCa cells. The data were obtained from at least three independent experiments, and the values are shown as the mean ± SEM; * p< 0.05; **p<0.01.
Mentions: XRN1 (5′-3′ exoribonuclease 1) was inferred as a potential target of miR-204 via the algorithms of TargetScan 5.2 (http://targetscan.org/), PicTar (http://pictar.mdc-berlin.de/), and DIANA-microT v3.0 (http://diana.cslab.ece.ntua.gr/microT/). To validate it, a luciferase reporter construct was generated by cloning a 562-bp-long 3′-UTR of XRN1 mRNA downstream of the Renilla luciferase gene. Subsequently, our assay indicated that the luciferase activity in this reporter was inhibited by 47.8% in LNCaP cells (Fig. 3A). Futhermore, the mutations introduced to the miR-204-pairing sequence in 3-UTR of XRN1 almost reversed the inhibition of luciferase activity by miR-204 (Fig. 3A), indicating that miR-204 directly targeted the 3′-UTR of XRN1. In support of this, ectopic expression of miR-204 lowered the level of XRN1 protein in all the PCa cell lines tested (Fig. 3B), whereas introduction of the miR-204 inhibitor raised level of XRN1mRNA (Fig. 3C), suggesting that miR-204 is a repressor of XRN1 expression in PCa cells.

Bottom Line: Androgen-responsive genes involved in PCa progression including NED remain largely unknown.Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells.Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.

ABSTRACT
Androgen deprivation therapy in prostate cancer (PCa) causes neuroendocrine differentiation (NED) of prostatic adenocarcinomas (PAC) cells, leading to recurrence of PCa. Androgen-responsive genes involved in PCa progression including NED remain largely unknown. Here we demonstrated the importance of androgen receptor (AR)-microRNA-204 (miR-204)-XRN1 axis in PCa cell lines and the rat ventral prostate. Androgens downregulate miR-204, resulting in induction of XRN1 (5'-3' exoribonuclease 1), which we identified as a miR-204 target. miR-204 acts as a tumor suppressor in two PAC cell lines (LNCaP and 22Rv1) and as an oncomiR in two neuroendocrine-like prostate cancer (NEPC) cell lines (PC-3 and CL1). Importantly, overexpression of miR-204 and knockdown of XRN1 inhibited AR expression in PCa cells. Repression of miR-34a, a known AR-targeting miRNA, contributes AR expression by XRN1. Thus we revealed the AR-miR-204-XRN1-miR-34a positive feedback loop and a dual function of miR-204/XRN1 axis in prostate cancer.

No MeSH data available.


Related in: MedlinePlus