Limits...
MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC).

Zhang J, Wang Y, Chen X, Zhou Y, Jiang F, Chen J, Wang L, Zhang WF - Oncotarget (2015)

Bottom Line: We demonstrated that the mRNA and protein levels of AREG were greatly reduced when forcing miR-34a expression.Moreover, the results of luciferase assay provided the further evidence that miR-34a degraded AREG mRNA through targeting the 3'-UTR site.Additionally, Over-expressing miR-34a greatly reduced EGFR and uPA, which were reversed by re-expression of AREG.

View Article: PubMed Central - PubMed

Affiliation: The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

ABSTRACT
MiR-34a is a well-known tumor metastasis inhibitor, but only a few target genes involved in metastasis have been identified. In HNSCC, the role of miR-34a in metastasis has not been fully elaborated, and the target gene of miR-34a is still blind. Here we addressed that, the relative lower expression of miR-34a is associated with HNSCC lymphatic metastasis. HNSCC metastasis was found to be strongly suppressed in vitro and in vivo by over-expressing miR-34a. In order to screen the possible target genes of miR-34a in HNSCC, a microarray-based differential mRNA profiling mediated by miR-34a over-expression was performed, and AREG was identified as a pivotal target. We demonstrated that the mRNA and protein levels of AREG were greatly reduced when forcing miR-34a expression. The correlation between AREG mRNA levels and HNSCC metastatic phenotype was also significant in HNSCC tissues (p < 0.01). Moreover, the results of luciferase assay provided the further evidence that miR-34a degraded AREG mRNA through targeting the 3'-UTR site. Restoration of AREG expression partially rescued miR-34a-mediated cell invasion defects in vivo and in vitro. Additionally, Over-expressing miR-34a greatly reduced EGFR and uPA, which were reversed by re-expression of AREG. Taken together, these findings indicate that miR-34a targets AREG, and is essential in inhibition of HNSCC metastasis.

No MeSH data available.


Related in: MedlinePlus

(A) Attenuated AREG protein expression by AREG mRNA knocking down(B, C) Inhibition of AREG expression impaired HNSCC cell invasion in vitro. (D) Increased AREG protein expression by over-expression of AREG mRNA level. (E, F) Re-expression of AREG partially rescues miR-34a-imposed cell invasion defects in vitro.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4480692&req=5

Figure 6: (A) Attenuated AREG protein expression by AREG mRNA knocking down(B, C) Inhibition of AREG expression impaired HNSCC cell invasion in vitro. (D) Increased AREG protein expression by over-expression of AREG mRNA level. (E, F) Re-expression of AREG partially rescues miR-34a-imposed cell invasion defects in vitro.

Mentions: To assess the functional contributions of AREG to HNSCC invasion, we first examined whether AREG inhibition affected the invasion of Fadu and UM-SCC-23 cells. Stable clones of Fadu-AREG-sh1/-sh2 and UM-SCC-23-AREG-sh1/sh2 were generated that expressed AREG shRNA (AREG-sh1/-sh2) and exhibited diminished AREG protein expression (Figure 6A). Attenuated AREG expression in Fadu-AREG-sh and UM-SCC-23-AREG-sh cells caused a significant decrease in HNSCC cell invasion (Figure 6B). Statistically, repressing AREG decreased Fadu cells invasion by 2.7~3.7-fold and UM-SCC-23 cells invasion by 3.4–6.6-fold (p < 0.01, Figure 6C).


MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC).

Zhang J, Wang Y, Chen X, Zhou Y, Jiang F, Chen J, Wang L, Zhang WF - Oncotarget (2015)

(A) Attenuated AREG protein expression by AREG mRNA knocking down(B, C) Inhibition of AREG expression impaired HNSCC cell invasion in vitro. (D) Increased AREG protein expression by over-expression of AREG mRNA level. (E, F) Re-expression of AREG partially rescues miR-34a-imposed cell invasion defects in vitro.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4480692&req=5

Figure 6: (A) Attenuated AREG protein expression by AREG mRNA knocking down(B, C) Inhibition of AREG expression impaired HNSCC cell invasion in vitro. (D) Increased AREG protein expression by over-expression of AREG mRNA level. (E, F) Re-expression of AREG partially rescues miR-34a-imposed cell invasion defects in vitro.
Mentions: To assess the functional contributions of AREG to HNSCC invasion, we first examined whether AREG inhibition affected the invasion of Fadu and UM-SCC-23 cells. Stable clones of Fadu-AREG-sh1/-sh2 and UM-SCC-23-AREG-sh1/sh2 were generated that expressed AREG shRNA (AREG-sh1/-sh2) and exhibited diminished AREG protein expression (Figure 6A). Attenuated AREG expression in Fadu-AREG-sh and UM-SCC-23-AREG-sh cells caused a significant decrease in HNSCC cell invasion (Figure 6B). Statistically, repressing AREG decreased Fadu cells invasion by 2.7~3.7-fold and UM-SCC-23 cells invasion by 3.4–6.6-fold (p < 0.01, Figure 6C).

Bottom Line: We demonstrated that the mRNA and protein levels of AREG were greatly reduced when forcing miR-34a expression.Moreover, the results of luciferase assay provided the further evidence that miR-34a degraded AREG mRNA through targeting the 3'-UTR site.Additionally, Over-expressing miR-34a greatly reduced EGFR and uPA, which were reversed by re-expression of AREG.

View Article: PubMed Central - PubMed

Affiliation: The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei_MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

ABSTRACT
MiR-34a is a well-known tumor metastasis inhibitor, but only a few target genes involved in metastasis have been identified. In HNSCC, the role of miR-34a in metastasis has not been fully elaborated, and the target gene of miR-34a is still blind. Here we addressed that, the relative lower expression of miR-34a is associated with HNSCC lymphatic metastasis. HNSCC metastasis was found to be strongly suppressed in vitro and in vivo by over-expressing miR-34a. In order to screen the possible target genes of miR-34a in HNSCC, a microarray-based differential mRNA profiling mediated by miR-34a over-expression was performed, and AREG was identified as a pivotal target. We demonstrated that the mRNA and protein levels of AREG were greatly reduced when forcing miR-34a expression. The correlation between AREG mRNA levels and HNSCC metastatic phenotype was also significant in HNSCC tissues (p < 0.01). Moreover, the results of luciferase assay provided the further evidence that miR-34a degraded AREG mRNA through targeting the 3'-UTR site. Restoration of AREG expression partially rescued miR-34a-mediated cell invasion defects in vivo and in vitro. Additionally, Over-expressing miR-34a greatly reduced EGFR and uPA, which were reversed by re-expression of AREG. Taken together, these findings indicate that miR-34a targets AREG, and is essential in inhibition of HNSCC metastasis.

No MeSH data available.


Related in: MedlinePlus