Limits...
Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy.

Nagashima M, Monden Y, Dan I, Dan H, Tsuzuki D, Mizutani T, Kyutoku Y, Gunji Y, Momoi MY, Watanabe E, Yamagata T - Neurophotonics (2014)

Bottom Line: The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children.These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus.Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype.

View Article: PubMed Central - PubMed

Affiliation: Jichi Medical University , Department of Pediatrics, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.

ABSTRACT
The current study aimed to explore the neural substrate for methylphenidate effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 22 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after methylphenidate or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Twenty-two age- and gender-matched normal controls without methylphenidate administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices, and this activation was absent in premedicated ADHD children. The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children. These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus. Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype.

No MeSH data available.


Related in: MedlinePlus

Spatial profiles of fNIRS channels. Left and right side views [(a) and (b)] of the probe arrangements are exhibited with fNIRS channel orientation. Detectors are indicated with blue circles, illuminators with red circles, and channels with white squares. Corresponding channel numbers are shown in black. Channel locations on the brain are exhibited for both left and right side views [(c) and (d)]. Probabilistically estimated fNIRS channel locations (centers of blue circles) for control and ADHD subjects, and their spatial variability (standard deviations, radii of the blue circles) associated with the estimation are depicted in Montreal Neurological Institute (MNI) space.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4478959&req=5

f2: Spatial profiles of fNIRS channels. Left and right side views [(a) and (b)] of the probe arrangements are exhibited with fNIRS channel orientation. Detectors are indicated with blue circles, illuminators with red circles, and channels with white squares. Corresponding channel numbers are shown in black. Channel locations on the brain are exhibited for both left and right side views [(c) and (d)]. Probabilistically estimated fNIRS channel locations (centers of blue circles) for control and ADHD subjects, and their spatial variability (standard deviations, radii of the blue circles) associated with the estimation are depicted in Montreal Neurological Institute (MNI) space.

Mentions: We used the multichannel fNIRS system ETG-4000 (Hitachi Medical Corporation, Kashiwa, Japan), using two wavelengths of near-infrared light (695 and 830 nm). We analyzed the optical data based on the modified Beer-Lambert law52 as previously described.53 This method allowed us to calculate signals reflecting the oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb), and total hemoglobin signal changes, calculated in units of millimolar-millimeters.53 We set the fNIRS probes to cover the lateral prefrontal cortices and inferior parietal lobe in reference to previous studies.54–58 Specifically, we used two sets of multichannel probe holders, consisting of eight illuminating and seven detecting probes arranged alternately at an interprobe distance of 3 cm, resulting in 22 channels (CH) per set (Fig. 2).


Neuropharmacological effect of methylphenidate on attention network in children with attention deficit hyperactivity disorder during oddball paradigms as assessed using functional near-infrared spectroscopy.

Nagashima M, Monden Y, Dan I, Dan H, Tsuzuki D, Mizutani T, Kyutoku Y, Gunji Y, Momoi MY, Watanabe E, Yamagata T - Neurophotonics (2014)

Spatial profiles of fNIRS channels. Left and right side views [(a) and (b)] of the probe arrangements are exhibited with fNIRS channel orientation. Detectors are indicated with blue circles, illuminators with red circles, and channels with white squares. Corresponding channel numbers are shown in black. Channel locations on the brain are exhibited for both left and right side views [(c) and (d)]. Probabilistically estimated fNIRS channel locations (centers of blue circles) for control and ADHD subjects, and their spatial variability (standard deviations, radii of the blue circles) associated with the estimation are depicted in Montreal Neurological Institute (MNI) space.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4478959&req=5

f2: Spatial profiles of fNIRS channels. Left and right side views [(a) and (b)] of the probe arrangements are exhibited with fNIRS channel orientation. Detectors are indicated with blue circles, illuminators with red circles, and channels with white squares. Corresponding channel numbers are shown in black. Channel locations on the brain are exhibited for both left and right side views [(c) and (d)]. Probabilistically estimated fNIRS channel locations (centers of blue circles) for control and ADHD subjects, and their spatial variability (standard deviations, radii of the blue circles) associated with the estimation are depicted in Montreal Neurological Institute (MNI) space.
Mentions: We used the multichannel fNIRS system ETG-4000 (Hitachi Medical Corporation, Kashiwa, Japan), using two wavelengths of near-infrared light (695 and 830 nm). We analyzed the optical data based on the modified Beer-Lambert law52 as previously described.53 This method allowed us to calculate signals reflecting the oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb), and total hemoglobin signal changes, calculated in units of millimolar-millimeters.53 We set the fNIRS probes to cover the lateral prefrontal cortices and inferior parietal lobe in reference to previous studies.54–58 Specifically, we used two sets of multichannel probe holders, consisting of eight illuminating and seven detecting probes arranged alternately at an interprobe distance of 3 cm, resulting in 22 channels (CH) per set (Fig. 2).

Bottom Line: The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children.These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus.Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype.

View Article: PubMed Central - PubMed

Affiliation: Jichi Medical University , Department of Pediatrics, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.

ABSTRACT
The current study aimed to explore the neural substrate for methylphenidate effects on attentional control in school-aged children with attention deficit hyperactivity disorder (ADHD) using functional near-infrared spectroscopy (fNIRS), which can be applied to young children with ADHD more easily than conventional neuroimaging modalities. Using fNIRS, we monitored the oxy-hemoglobin signal changes of 22 ADHD children (6 to 14 years old) performing an oddball task before and 1.5 h after methylphenidate or placebo administration, in a randomized, double-blind, placebo-controlled, crossover design. Twenty-two age- and gender-matched normal controls without methylphenidate administration were also monitored. In the control subjects, the oddball task recruited the right prefrontal and inferior parietal cortices, and this activation was absent in premedicated ADHD children. The reduced right prefrontal activation was normalized after methylphenidate but not placebo administration in ADHD children. These results are consistent with the neuropharmacological effects of methylphenidate to upregulate the dopamine system in the prefrontal cortex innervating from the ventral tegmentum (mesocortical pathway), but not the noradrenergic system from the parietal cortex to the locus coeruleus. Thus, right prefrontal activation would serve as an objective neurofunctional biomarker to indicate the effectiveness of methylphenidate on ADHD children in attentional control. fNIRS monitoring enhances early clinical diagnosis and the treatment of ADHD children, especially those with an inattention phenotype.

No MeSH data available.


Related in: MedlinePlus