Limits...
Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

Booth AJ, Elliott MT - Front Psychol (2015)

Bottom Line: However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory).We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14).Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, University of Birmingham , Edgbaston, UK.

ABSTRACT
The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

No MeSH data available.


Related in: MedlinePlus

(A) Representation of experimental set up. Participants faced a large projection screen which presented the visual stimuli. The stimuli (100 pixel diameter dots) moved vertically up and down, following a sinusoidal trajectory. The target stimulus was always the center dot. Distractor dots moved out of phase with the target by 0, ±100, ±200 ms. Participants made bimanual arm movements in synchrony with the target stimulus, flexing and extending the forearm from the elbow. (B) Formation of target and distractor stimuli. We investigated if the distraction effect was a function of the number of distractor stimuli. The number of distractor stimuli was varied across trials such that there were no distractors (top left), two distractors (bottom left), eight distractors (top right), or 14 distractors (bottom right). (C) Measurements of timing accuracy. Representative trajectories of the target stimulus (bottom trace, dashed pink) and the corresponding participant’s dominant arm movement (top, solid green) are shown. We extracted the times of the minimum positions for each movement oscillation along with the times of the minimum stimulus positions. Asynchrony was calculated by subtracting the time of movement event from the time of the corresponding stimulus event.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4478893&req=5

Figure 1: (A) Representation of experimental set up. Participants faced a large projection screen which presented the visual stimuli. The stimuli (100 pixel diameter dots) moved vertically up and down, following a sinusoidal trajectory. The target stimulus was always the center dot. Distractor dots moved out of phase with the target by 0, ±100, ±200 ms. Participants made bimanual arm movements in synchrony with the target stimulus, flexing and extending the forearm from the elbow. (B) Formation of target and distractor stimuli. We investigated if the distraction effect was a function of the number of distractor stimuli. The number of distractor stimuli was varied across trials such that there were no distractors (top left), two distractors (bottom left), eight distractors (top right), or 14 distractors (bottom right). (C) Measurements of timing accuracy. Representative trajectories of the target stimulus (bottom trace, dashed pink) and the corresponding participant’s dominant arm movement (top, solid green) are shown. We extracted the times of the minimum positions for each movement oscillation along with the times of the minimum stimulus positions. Asynchrony was calculated by subtracting the time of movement event from the time of the corresponding stimulus event.

Mentions: Participants stood on a marked point 1.85 m from a projection screen (1.6 m wide × 1.2 m tall; Figure 1A). Arm movement trajectories were captured using a 12-camera Qualisys Oqus motion capture system (Qualisys AB, Gothenburg, Sweden), with adhesive reflective markers attached to the shoulders, elbows, wrists, and index fingers of both arms. The camera system operated with a sampling rate of 200 Hz.


Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

Booth AJ, Elliott MT - Front Psychol (2015)

(A) Representation of experimental set up. Participants faced a large projection screen which presented the visual stimuli. The stimuli (100 pixel diameter dots) moved vertically up and down, following a sinusoidal trajectory. The target stimulus was always the center dot. Distractor dots moved out of phase with the target by 0, ±100, ±200 ms. Participants made bimanual arm movements in synchrony with the target stimulus, flexing and extending the forearm from the elbow. (B) Formation of target and distractor stimuli. We investigated if the distraction effect was a function of the number of distractor stimuli. The number of distractor stimuli was varied across trials such that there were no distractors (top left), two distractors (bottom left), eight distractors (top right), or 14 distractors (bottom right). (C) Measurements of timing accuracy. Representative trajectories of the target stimulus (bottom trace, dashed pink) and the corresponding participant’s dominant arm movement (top, solid green) are shown. We extracted the times of the minimum positions for each movement oscillation along with the times of the minimum stimulus positions. Asynchrony was calculated by subtracting the time of movement event from the time of the corresponding stimulus event.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4478893&req=5

Figure 1: (A) Representation of experimental set up. Participants faced a large projection screen which presented the visual stimuli. The stimuli (100 pixel diameter dots) moved vertically up and down, following a sinusoidal trajectory. The target stimulus was always the center dot. Distractor dots moved out of phase with the target by 0, ±100, ±200 ms. Participants made bimanual arm movements in synchrony with the target stimulus, flexing and extending the forearm from the elbow. (B) Formation of target and distractor stimuli. We investigated if the distraction effect was a function of the number of distractor stimuli. The number of distractor stimuli was varied across trials such that there were no distractors (top left), two distractors (bottom left), eight distractors (top right), or 14 distractors (bottom right). (C) Measurements of timing accuracy. Representative trajectories of the target stimulus (bottom trace, dashed pink) and the corresponding participant’s dominant arm movement (top, solid green) are shown. We extracted the times of the minimum positions for each movement oscillation along with the times of the minimum stimulus positions. Asynchrony was calculated by subtracting the time of movement event from the time of the corresponding stimulus event.
Mentions: Participants stood on a marked point 1.85 m from a projection screen (1.6 m wide × 1.2 m tall; Figure 1A). Arm movement trajectories were captured using a 12-camera Qualisys Oqus motion capture system (Qualisys AB, Gothenburg, Sweden), with adhesive reflective markers attached to the shoulders, elbows, wrists, and index fingers of both arms. The camera system operated with a sampling rate of 200 Hz.

Bottom Line: However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory).We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14).Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

View Article: PubMed Central - PubMed

Affiliation: School of Psychology, University of Birmingham , Edgbaston, UK.

ABSTRACT
The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

No MeSH data available.


Related in: MedlinePlus