Limits...
Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

Sturrock CJ, Woodhall J, Brown M, Walker C, Mooney SJ, Ray RV - Front Plant Sci (2015)

Bottom Line: Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host.Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA.The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

View Article: PubMed Central - PubMed

Affiliation: School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough UK.

ABSTRACT
Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

No MeSH data available.


Related in: MedlinePlus

Pathogen DNA quantified using real-time PCR at 2, 4, and 6 dfi from soil inoculated with R. solani AG2-1 (Rs AG2-1). Bar shows SED for sample time (T) for both crop species.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4478850&req=5

Figure 2: Pathogen DNA quantified using real-time PCR at 2, 4, and 6 dfi from soil inoculated with R. solani AG2-1 (Rs AG2-1). Bar shows SED for sample time (T) for both crop species.

Mentions: DNA of R. solani was not detected in the soil of non-inoculated plants at 2 dfi, but was quantifiable at 4 and 6 dfi at low concentrations (0.008 and 0.019 ng g-1) in two soil columns. In contrast, DNA in inoculated soils of both crops at 2 dfi was above 100 ng g-1 (Figure 2). The trend of DNA accumulation over the duration of the sampling period was similar for the two crops showing an increase in pathogen DNA by day 4 followed by a plateau by 6 dfi (Figure 2). The mean pathogen DNA in the OSR treatment at 4 dfi was approximately 45% higher than in the wheat treatment (P = 0.063) although no differences were observed between crops for 2 or 6 dfi.


Effects of damping-off caused by Rhizoctonia solani anastomosis group 2-1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR.

Sturrock CJ, Woodhall J, Brown M, Walker C, Mooney SJ, Ray RV - Front Plant Sci (2015)

Pathogen DNA quantified using real-time PCR at 2, 4, and 6 dfi from soil inoculated with R. solani AG2-1 (Rs AG2-1). Bar shows SED for sample time (T) for both crop species.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4478850&req=5

Figure 2: Pathogen DNA quantified using real-time PCR at 2, 4, and 6 dfi from soil inoculated with R. solani AG2-1 (Rs AG2-1). Bar shows SED for sample time (T) for both crop species.
Mentions: DNA of R. solani was not detected in the soil of non-inoculated plants at 2 dfi, but was quantifiable at 4 and 6 dfi at low concentrations (0.008 and 0.019 ng g-1) in two soil columns. In contrast, DNA in inoculated soils of both crops at 2 dfi was above 100 ng g-1 (Figure 2). The trend of DNA accumulation over the duration of the sampling period was similar for the two crops showing an increase in pathogen DNA by day 4 followed by a plateau by 6 dfi (Figure 2). The mean pathogen DNA in the OSR treatment at 4 dfi was approximately 45% higher than in the wheat treatment (P = 0.063) although no differences were observed between crops for 2 or 6 dfi.

Bottom Line: Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host.Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA.The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

View Article: PubMed Central - PubMed

Affiliation: School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough UK.

ABSTRACT
Rhizoctonia solani is a plant pathogenic fungus that causes significant establishment and yield losses to several important food crops globally. This is the first application of high resolution X-ray micro Computed Tomography (X-ray μCT) and real-time PCR to study host-pathogen interactions in situ and elucidate the mechanism of Rhizoctonia damping-off disease over a 6-day period caused by R. solani, anastomosis group (AG) 2-1 in wheat (Triticum aestivum cv. Gallant) and oil seed rape (OSR, Brassica napus cv. Marinka). Temporal, non-destructive analysis of root system architectures was performed using RooTrak and validated by the destructive method of root washing. Disease was assessed visually and related to pathogen DNA quantification in soil using real-time PCR. R. solani AG2-1 at similar initial DNA concentrations in soil was capable of causing significant damage to the developing root systems of both wheat and OSR. Disease caused reductions in primary root number, root volume, root surface area, and convex hull which were affected less in the monocotyledonous host. Wheat was more tolerant to the pathogen, exhibited fewer symptoms and developed more complex root systems. In contrast, R. solani caused earlier damage and maceration of the taproot of the dicot, OSR. Disease severity was related to pathogen DNA accumulation in soil only for OSR, however, reductions in root traits were significantly associated with both disease and pathogen DNA. The method offers the first steps in advancing current understanding of soil-borne pathogen behavior in situ at the pore scale, which may lead to the development of mitigation measures to combat disease influence in the field.

No MeSH data available.


Related in: MedlinePlus