Limits...
Effect of Various Phyto-extracts on Physico-chemical, Colour, and Oxidative Stability of Pork Frankfurters.

Wagh RV, Chatli MK, Ruusunen M, Puolanne E, Ertbjerg P - Asian-australas. J. Anim. Sci. (2015)

Bottom Line: The SBT and ACE were identified as being the most effective antioxidants to retard lipid oxidation with the potency decreasing in the following order: SBT>ACE>GSE>GTE>FSE based on thiobarbituric acid reacting substances, peroxide value and free fatty acids.In all samples pH and aw decreased during storage period.The results suggest that functional plant-derived extracts can be valuable to the modification of frankfurter formulations for improved oxidative stability as well as quality characteristics.

View Article: PubMed Central - PubMed

Affiliation: Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Punjab, Ludhiana 141 004, India .

ABSTRACT
Lipid oxidation, colour stability and physico-chemical quality of pork frankfurters with the incorporation of 0.30% sea buckthorn (SBT), 0.10% grape seed (GSE), 0.03% green tea (GTE), 0.12% fenugreek seed (FSE) and 0.10% Acacia catechu (ACE) were studied during 20 days of refrigerated aerobic storage. The SBT and ACE were identified as being the most effective antioxidants to retard lipid oxidation with the potency decreasing in the following order: SBT>ACE>GSE>GTE>FSE based on thiobarbituric acid reacting substances, peroxide value and free fatty acids. In all samples pH and aw decreased during storage period. The L* value of treated as well as control samples decreased over time while SBT and ACE exhibited an increased redness producing higher a* values than other treatments. However, GTE was more effective in increasing b* values than other treatments at the end of storage. The results suggest that functional plant-derived extracts can be valuable to the modification of frankfurter formulations for improved oxidative stability as well as quality characteristics.

No MeSH data available.


Effect of added phyto-extracts on free fatty acids (FFA) of pork frankfurters during refrigerated storage. Samples were treated as follows: CONTROL, without any extracts; SBT, 0.30% sea buckthorn seed extract; GSE, 0.10% grape seed extract; GTE, 0.03% green tea extract; FSE, 0.12% fenugreek seed extract; ACE, 0.10% Acacia catechu extract. Bar represents the standard error (n = 6).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4478487&req=5

f3-ajas-28-8-1178: Effect of added phyto-extracts on free fatty acids (FFA) of pork frankfurters during refrigerated storage. Samples were treated as follows: CONTROL, without any extracts; SBT, 0.30% sea buckthorn seed extract; GSE, 0.10% grape seed extract; GTE, 0.03% green tea extract; FSE, 0.12% fenugreek seed extract; ACE, 0.10% Acacia catechu extract. Bar represents the standard error (n = 6).

Mentions: As expected, the FFA contents increased (p<0.05) during storage irrespective of the treatment (Figure 3). The largest increase was observed in control. An increase in FFA values is due to lipase action in meat products during storage which are justified by previous studies on pork sausages (Fernández and Rodríguez, 1991).


Effect of Various Phyto-extracts on Physico-chemical, Colour, and Oxidative Stability of Pork Frankfurters.

Wagh RV, Chatli MK, Ruusunen M, Puolanne E, Ertbjerg P - Asian-australas. J. Anim. Sci. (2015)

Effect of added phyto-extracts on free fatty acids (FFA) of pork frankfurters during refrigerated storage. Samples were treated as follows: CONTROL, without any extracts; SBT, 0.30% sea buckthorn seed extract; GSE, 0.10% grape seed extract; GTE, 0.03% green tea extract; FSE, 0.12% fenugreek seed extract; ACE, 0.10% Acacia catechu extract. Bar represents the standard error (n = 6).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4478487&req=5

f3-ajas-28-8-1178: Effect of added phyto-extracts on free fatty acids (FFA) of pork frankfurters during refrigerated storage. Samples were treated as follows: CONTROL, without any extracts; SBT, 0.30% sea buckthorn seed extract; GSE, 0.10% grape seed extract; GTE, 0.03% green tea extract; FSE, 0.12% fenugreek seed extract; ACE, 0.10% Acacia catechu extract. Bar represents the standard error (n = 6).
Mentions: As expected, the FFA contents increased (p<0.05) during storage irrespective of the treatment (Figure 3). The largest increase was observed in control. An increase in FFA values is due to lipase action in meat products during storage which are justified by previous studies on pork sausages (Fernández and Rodríguez, 1991).

Bottom Line: The SBT and ACE were identified as being the most effective antioxidants to retard lipid oxidation with the potency decreasing in the following order: SBT>ACE>GSE>GTE>FSE based on thiobarbituric acid reacting substances, peroxide value and free fatty acids.In all samples pH and aw decreased during storage period.The results suggest that functional plant-derived extracts can be valuable to the modification of frankfurter formulations for improved oxidative stability as well as quality characteristics.

View Article: PubMed Central - PubMed

Affiliation: Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Punjab, Ludhiana 141 004, India .

ABSTRACT
Lipid oxidation, colour stability and physico-chemical quality of pork frankfurters with the incorporation of 0.30% sea buckthorn (SBT), 0.10% grape seed (GSE), 0.03% green tea (GTE), 0.12% fenugreek seed (FSE) and 0.10% Acacia catechu (ACE) were studied during 20 days of refrigerated aerobic storage. The SBT and ACE were identified as being the most effective antioxidants to retard lipid oxidation with the potency decreasing in the following order: SBT>ACE>GSE>GTE>FSE based on thiobarbituric acid reacting substances, peroxide value and free fatty acids. In all samples pH and aw decreased during storage period. The L* value of treated as well as control samples decreased over time while SBT and ACE exhibited an increased redness producing higher a* values than other treatments. However, GTE was more effective in increasing b* values than other treatments at the end of storage. The results suggest that functional plant-derived extracts can be valuable to the modification of frankfurter formulations for improved oxidative stability as well as quality characteristics.

No MeSH data available.