Limits...
Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia.

Lu H, Qian G, Ren Z, Zhang C, Zhang H, Xu W, Ye P, Yang Y, Li L - BMC Infect. Dis. (2015)

Bottom Line: The microbiomes of humans are associated with liver and lung inflammation.Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria.Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China. seawindlu@126.com.

ABSTRACT

Background: The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia.

Methods: Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis.

Results: Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia).

Conclusions: Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.

Show MeSH

Related in: MedlinePlus

Confirmation of the temporal stability of the oropharyngeal microbiome in a 5-day follow-up study. Cluster analysis of DGGE profiles of oropharyngeal bacteria in groups HC (a), CC (a), and CI (b). Cluster analysis was performed using Dice’s coefficient and UPGMA. Lanes were designated by patient number (1, 2, 3, 4), and visit number (1, 2, 3, and 4).CIn-1, before antibiotic treatment; CIn-2, during antibiotic treatment; CIn-3 and -4, after antibiotic treatment. The diversity index of these follow-up samples is shown (c). *p < 0.01; **p < 0.001
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4477430&req=5

Fig2: Confirmation of the temporal stability of the oropharyngeal microbiome in a 5-day follow-up study. Cluster analysis of DGGE profiles of oropharyngeal bacteria in groups HC (a), CC (a), and CI (b). Cluster analysis was performed using Dice’s coefficient and UPGMA. Lanes were designated by patient number (1, 2, 3, 4), and visit number (1, 2, 3, and 4).CIn-1, before antibiotic treatment; CIn-2, during antibiotic treatment; CIn-3 and -4, after antibiotic treatment. The diversity index of these follow-up samples is shown (c). *p < 0.01; **p < 0.001

Mentions: The DGGE profiles and cluster analysis demonstrated that three follow-up samples of each individual from the HC or CC groups (n = 10) clustered together, respectively (Fig. 2a). These results suggest that the oropharyngeal mucosal microbiome of each control individual exhibited relatively stable patterns during the follow-up (Fig. 2a). In contrast, because of antibiotic treatment, four follow-up samples from patients with pneumonia from the CI group (n = 12) did not cluster together (Fig. 2b). However, the DGGE profiles of each patients with pneumonia were similar between their third and fourth visits (Fig. 2b), suggesting that the oropharyngeal microbiome was relatively stable in patients after antibiotics treatments.Fig. 2


Alterations of Bacteroides sp., Neisseria sp., Actinomyces sp., and Streptococcus sp. populations in the oropharyngeal microbiome are associated with liver cirrhosis and pneumonia.

Lu H, Qian G, Ren Z, Zhang C, Zhang H, Xu W, Ye P, Yang Y, Li L - BMC Infect. Dis. (2015)

Confirmation of the temporal stability of the oropharyngeal microbiome in a 5-day follow-up study. Cluster analysis of DGGE profiles of oropharyngeal bacteria in groups HC (a), CC (a), and CI (b). Cluster analysis was performed using Dice’s coefficient and UPGMA. Lanes were designated by patient number (1, 2, 3, 4), and visit number (1, 2, 3, and 4).CIn-1, before antibiotic treatment; CIn-2, during antibiotic treatment; CIn-3 and -4, after antibiotic treatment. The diversity index of these follow-up samples is shown (c). *p < 0.01; **p < 0.001
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4477430&req=5

Fig2: Confirmation of the temporal stability of the oropharyngeal microbiome in a 5-day follow-up study. Cluster analysis of DGGE profiles of oropharyngeal bacteria in groups HC (a), CC (a), and CI (b). Cluster analysis was performed using Dice’s coefficient and UPGMA. Lanes were designated by patient number (1, 2, 3, 4), and visit number (1, 2, 3, and 4).CIn-1, before antibiotic treatment; CIn-2, during antibiotic treatment; CIn-3 and -4, after antibiotic treatment. The diversity index of these follow-up samples is shown (c). *p < 0.01; **p < 0.001
Mentions: The DGGE profiles and cluster analysis demonstrated that three follow-up samples of each individual from the HC or CC groups (n = 10) clustered together, respectively (Fig. 2a). These results suggest that the oropharyngeal mucosal microbiome of each control individual exhibited relatively stable patterns during the follow-up (Fig. 2a). In contrast, because of antibiotic treatment, four follow-up samples from patients with pneumonia from the CI group (n = 12) did not cluster together (Fig. 2b). However, the DGGE profiles of each patients with pneumonia were similar between their third and fourth visits (Fig. 2b), suggesting that the oropharyngeal microbiome was relatively stable in patients after antibiotics treatments.Fig. 2

Bottom Line: The microbiomes of humans are associated with liver and lung inflammation.Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria.Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China. seawindlu@126.com.

ABSTRACT

Background: The microbiomes of humans are associated with liver and lung inflammation. We identified and verified alterations of the oropharyngeal microbiome and assessed their association with cirrhosis and pneumonia.

Methods: Study components were as follows: (1) determination of the temporal stability of the oropharyngeal microbiome; (2) identification of oropharyngeal microbial variation in 90 subjects; (3) quantitative identification of disease-associated bacteria. DNAs enriched in bacterial sequences were produced from low-biomass oropharyngeal swabs using whole genome amplification and were analyzed using denaturing gradient gel electrophoresis analysis.

Results: Whole genome amplification combined with denaturing gradient gel electrophoresis analysis monitored successfully oropharyngeal microbial variations and showed that the composition of each subject's oropharyngeal microbiome remained relatively stable during the follow-up. The microbial composition of cirrhotic patients with pneumonia differed from those of others and clustered together in subgroup analysis. Further, species richness and the value of Shannon's diversity and evenness index increased significantly in patients with cirrhosis and pneumonia versus others (p < 0.001, versus healthy controls; p < 0.01, versus cirrhotic patients without pneumonia). Moreover, we identified variants of Bacteroides, Eubacterium, Lachnospiraceae, Neisseria, Actinomyces, and Streptococcus through phylogenetic analysis. Quantitative polymerase chain reaction assays revealed that the populations of Bacteroides, Neisseria, and Actinomycetes increased, while that of Streptococcus decreased in cirrhotic patients with pneumonia versus others (p < 0.001, versus Healthy controls; p < 0.01, versus cirrhotic patients without pneumonia).

Conclusions: Alterations of Bacteroides, Neisseria, Actinomyces, and Streptococcus populations in the oropharyngeal microbiome were associated with liver cirrhosis and pneumonia.

Show MeSH
Related in: MedlinePlus