Limits...
A new approach using high volume blood patch for prevention of post-dural puncture headache following intrathecal catheter pump exchange.

Abdulla S, Vielhaber S, Heinze HJ, Abdulla W - Int J Crit Illn Inj Sci (2015 Apr-Jun)

Bottom Line: Twenty-one patients were successfully treated with prophylactic EBP, while one patient could not be properly evaluated because of intracranial bleeding as the underlying disease.A new approach using a high-volume prophylactic EBP for preventing PDPH following catheter exchange is presented.The efficacy and safety of this technique for 1 year follow-up have been evaluated and was found to be safe and potentially effective.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany ; Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany ; German Center for Neurodegenerative Diseases, Magdeburg, Germany.

ABSTRACT

Background: In an observational study, complications of intrathecal catheter pumps necessitating surgical exchange were analyzed. Also the use of a high-volume prophylactic epidural blood patch (EBP) during surgery for preventing post-dural puncture headache (PDPH) with a follow-up for 1 year is described.

Materials and methods: In 22 patients with refractory chronic pain of cancer/noncancer origin or severe spasticity, who were receiving intrathecal morphine including adjuvants or baclofen for symptom relief, catheter exchange with or without pump was performed. In patients with documented symptoms of PDPH following initial intrathecal catheter implantation, a prophylactic EBP with a high blood volume was used for PDPH prevention during surgery. Catheters were replaced using 40 mL EBP before entering dural space at a speed of 5mL/min into the epidural space. Patients were asked to quantify pain experience and functional ability.

Results: From a sample of 72 patients admitted for catheter exchange with or without pump, 22 patients (33%) (12 male, 10 female) had a history of PDPH following initial implantation. Diagnostic and therapeutic measures occurring with malfunction of intrathecal catheter pump systems were described. Twenty-one patients were successfully treated with prophylactic EBP, while one patient could not be properly evaluated because of intracranial bleeding as the underlying disease.

Conclusions: A new approach using a high-volume prophylactic EBP for preventing PDPH following catheter exchange is presented. The efficacy and safety of this technique for 1 year follow-up have been evaluated and was found to be safe and potentially effective.

No MeSH data available.


Related in: MedlinePlus

Cerebrospinal fluid (CSF) dripping from Tuohy needle while spinal catheter inside
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4477403&req=5

Figure 1: Cerebrospinal fluid (CSF) dripping from Tuohy needle while spinal catheter inside

Mentions: After obtaining approval from our institutional review board, patients with severe chronic pain or spasticity, who had an intrathecal pump in place and experienced inadequate symptom relief between January 1998 and August 2010 were identified and included in the retrospective analysis. Twenty-two patients who had already suffered from symptoms of PDPH following catheter pump implantation were considered for a prophylactic EBP with a high blood volume during exchange. Prior to admission to surgery, the battery-powered or gas driven pump with its catheter was checked separately for proper function in each patient. Replacement due to battery exhaustion was not considered to be a pump failure. A catheter pump check algorithm was followed sequentially. A normal functioning pump was assumed in the battery-powered pump with normal movement of the rotor by bolus injection during fluoroscopy and in the gas pump with pressure measured in the mean chamber above 2,000 mbar. Beside the pump reservoir port, the side port for bypassing the pump with a self-sealing septum for percutaneous access to the catheter was used for aspiration and injection, and for evaluating its function with and without imaging. The patient under intubation anesthesia was placed in a lateral decubitus position, after which the back was flexed, prepped, and draped, in sterile fashion. Antibiotic prophylaxis was given 30 min prior to incision. Using electrocautery, meticulous attention to hemostasis was necessary during surgery. A posterior midline incision approximately 6 cm long was made from the skin to the supraspinous fascia at the level of L2–3 or L3–4. The defective catheter was first carefully removed, while a new one was prepared for placement. The 14-gauge Tuohy needle supplied by the manufacturer in the implant kit was advanced through the incision into the epidural space, using “loss of resistance” technique while a 10 mL syringe filled with normal saline was attached. Once the needle tip was in adequate position with its slightly curved tip directed superiorly, autologous venous blood was drawn by a second operator from the antecubital vein into a 10 mL plastic syringe attached to an extension tube under sterile technique. A total of 40 mL blood was injected slowly through the Tuohy needle at a speed of 5 mL/min into the epidural space to spread both cephalad and caudal. Then, the needle was advanced through the dura into the CSF fluid space and the catheter was introduced 15 cm intrathecally to the T11-level with the tip oriented cephalad while clear CSF was flowing [Figure 1]. At this point, it is preferable to check fluoroscopically the correct catheter movement into cranial direction without any looping on itself. The insight guide wire catheter with its small metallic bead at the tip could make fluoroscopic tracking relatively easy. After removing the needle and subsequently the guide wire, the spinal catheter was anchored to the lumbar fascia using a silastic anchor provided by the manufacturer. The anchor was placed around the catheter and sutured. The spinal catheter was checked for free flowing CSF by aspiration with a 2 mL plastic syringe. Once the tunnel needle was firmly attached, the spinal catheter was pulled by the tunnel subcutaneously from the lumbar side to the patient's flank site using a facilitating flank incision. Then, the spinal catheter was clamped with a rubber shod mosquito at the flank incision to prevent excessive CSF loss. After careful review of the manufacturer's procedural guidelines for pump exchange, a lunar incision around the pump pocket was made along the course of the proposed position in the right or left lower quadrant of the abdomen at the umbilical level. The malfunctioning pump was explanted and replaced with a new one implanted under the subcutaneous tissue of the abdomen or at the rectus fascia for secure attachment. The pump was placed into the pocket reservoir side up. The pump-sided catheter was measured, trimmed if needed, and connected to the pump. The connection was manually tested for leak using a saline injection in the catheter access port while occluding the catheter distally. Gentle subcutaneous guidance of the pump catheter tip attached firmly to the tunnel needle ensured safe tunneling to the flank incision. Prior to connecting both spinal and pump catheters at the flank incision, it is important to verify the free flow of CSF from the spinal catheter. Both catheter parts were attached using a metal pin connector secured with silk sutures. Before implantation, the pump was filled for 14 postoperative days and the catheter was filled with predetermined drug solution by a bridge bolus to clear the dead space and deliver the prescribed medication dose. The follow-up visits for 1 year were carried out on postoperative day 1 by the attending physician, then by telephone interview on day 2, later at weekly intervals during the 1st month, and finally at refilling requirements after surgery. Pumps were refilled only by trained staff of our pain clinic, using sterile refill kits offered by the pump manufacturer. The patients were asked to quantify their pain experience on a visual analog scale (VAS). Likewise, pain was assessed on a 0–3 verbal categorical rating scale (VRS) (0 = none, 1 = mild, 2 = moderate, and 3 = severe). Oswestry Activity Scale[910] which is a well-validated international outcome measure in the management of spinal disorders or Modified Ashworth Scale[11] for examining the efficacy of baclofen by grading muscle spasticity and clinical interview were obtained by neurology staff specialists experienced in pain and spasticity management. Patient satisfaction with the effectiveness of pain relief was recorded by using a 4-point scale which shows the verbal expressed satisfaction of assigned numerical values: 1 = worse, 2 = moderate, 3 = good, 4 = very good. Results were predominantly descriptive and expressed as means and standard deviations or medians plus minimum and maximum.


A new approach using high volume blood patch for prevention of post-dural puncture headache following intrathecal catheter pump exchange.

Abdulla S, Vielhaber S, Heinze HJ, Abdulla W - Int J Crit Illn Inj Sci (2015 Apr-Jun)

Cerebrospinal fluid (CSF) dripping from Tuohy needle while spinal catheter inside
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4477403&req=5

Figure 1: Cerebrospinal fluid (CSF) dripping from Tuohy needle while spinal catheter inside
Mentions: After obtaining approval from our institutional review board, patients with severe chronic pain or spasticity, who had an intrathecal pump in place and experienced inadequate symptom relief between January 1998 and August 2010 were identified and included in the retrospective analysis. Twenty-two patients who had already suffered from symptoms of PDPH following catheter pump implantation were considered for a prophylactic EBP with a high blood volume during exchange. Prior to admission to surgery, the battery-powered or gas driven pump with its catheter was checked separately for proper function in each patient. Replacement due to battery exhaustion was not considered to be a pump failure. A catheter pump check algorithm was followed sequentially. A normal functioning pump was assumed in the battery-powered pump with normal movement of the rotor by bolus injection during fluoroscopy and in the gas pump with pressure measured in the mean chamber above 2,000 mbar. Beside the pump reservoir port, the side port for bypassing the pump with a self-sealing septum for percutaneous access to the catheter was used for aspiration and injection, and for evaluating its function with and without imaging. The patient under intubation anesthesia was placed in a lateral decubitus position, after which the back was flexed, prepped, and draped, in sterile fashion. Antibiotic prophylaxis was given 30 min prior to incision. Using electrocautery, meticulous attention to hemostasis was necessary during surgery. A posterior midline incision approximately 6 cm long was made from the skin to the supraspinous fascia at the level of L2–3 or L3–4. The defective catheter was first carefully removed, while a new one was prepared for placement. The 14-gauge Tuohy needle supplied by the manufacturer in the implant kit was advanced through the incision into the epidural space, using “loss of resistance” technique while a 10 mL syringe filled with normal saline was attached. Once the needle tip was in adequate position with its slightly curved tip directed superiorly, autologous venous blood was drawn by a second operator from the antecubital vein into a 10 mL plastic syringe attached to an extension tube under sterile technique. A total of 40 mL blood was injected slowly through the Tuohy needle at a speed of 5 mL/min into the epidural space to spread both cephalad and caudal. Then, the needle was advanced through the dura into the CSF fluid space and the catheter was introduced 15 cm intrathecally to the T11-level with the tip oriented cephalad while clear CSF was flowing [Figure 1]. At this point, it is preferable to check fluoroscopically the correct catheter movement into cranial direction without any looping on itself. The insight guide wire catheter with its small metallic bead at the tip could make fluoroscopic tracking relatively easy. After removing the needle and subsequently the guide wire, the spinal catheter was anchored to the lumbar fascia using a silastic anchor provided by the manufacturer. The anchor was placed around the catheter and sutured. The spinal catheter was checked for free flowing CSF by aspiration with a 2 mL plastic syringe. Once the tunnel needle was firmly attached, the spinal catheter was pulled by the tunnel subcutaneously from the lumbar side to the patient's flank site using a facilitating flank incision. Then, the spinal catheter was clamped with a rubber shod mosquito at the flank incision to prevent excessive CSF loss. After careful review of the manufacturer's procedural guidelines for pump exchange, a lunar incision around the pump pocket was made along the course of the proposed position in the right or left lower quadrant of the abdomen at the umbilical level. The malfunctioning pump was explanted and replaced with a new one implanted under the subcutaneous tissue of the abdomen or at the rectus fascia for secure attachment. The pump was placed into the pocket reservoir side up. The pump-sided catheter was measured, trimmed if needed, and connected to the pump. The connection was manually tested for leak using a saline injection in the catheter access port while occluding the catheter distally. Gentle subcutaneous guidance of the pump catheter tip attached firmly to the tunnel needle ensured safe tunneling to the flank incision. Prior to connecting both spinal and pump catheters at the flank incision, it is important to verify the free flow of CSF from the spinal catheter. Both catheter parts were attached using a metal pin connector secured with silk sutures. Before implantation, the pump was filled for 14 postoperative days and the catheter was filled with predetermined drug solution by a bridge bolus to clear the dead space and deliver the prescribed medication dose. The follow-up visits for 1 year were carried out on postoperative day 1 by the attending physician, then by telephone interview on day 2, later at weekly intervals during the 1st month, and finally at refilling requirements after surgery. Pumps were refilled only by trained staff of our pain clinic, using sterile refill kits offered by the pump manufacturer. The patients were asked to quantify their pain experience on a visual analog scale (VAS). Likewise, pain was assessed on a 0–3 verbal categorical rating scale (VRS) (0 = none, 1 = mild, 2 = moderate, and 3 = severe). Oswestry Activity Scale[910] which is a well-validated international outcome measure in the management of spinal disorders or Modified Ashworth Scale[11] for examining the efficacy of baclofen by grading muscle spasticity and clinical interview were obtained by neurology staff specialists experienced in pain and spasticity management. Patient satisfaction with the effectiveness of pain relief was recorded by using a 4-point scale which shows the verbal expressed satisfaction of assigned numerical values: 1 = worse, 2 = moderate, 3 = good, 4 = very good. Results were predominantly descriptive and expressed as means and standard deviations or medians plus minimum and maximum.

Bottom Line: Twenty-one patients were successfully treated with prophylactic EBP, while one patient could not be properly evaluated because of intracranial bleeding as the underlying disease.A new approach using a high-volume prophylactic EBP for preventing PDPH following catheter exchange is presented.The efficacy and safety of this technique for 1 year follow-up have been evaluated and was found to be safe and potentially effective.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany ; Department of Neurology, Medizinische Hochschule Hannover, Hannover, Germany ; German Center for Neurodegenerative Diseases, Magdeburg, Germany.

ABSTRACT

Background: In an observational study, complications of intrathecal catheter pumps necessitating surgical exchange were analyzed. Also the use of a high-volume prophylactic epidural blood patch (EBP) during surgery for preventing post-dural puncture headache (PDPH) with a follow-up for 1 year is described.

Materials and methods: In 22 patients with refractory chronic pain of cancer/noncancer origin or severe spasticity, who were receiving intrathecal morphine including adjuvants or baclofen for symptom relief, catheter exchange with or without pump was performed. In patients with documented symptoms of PDPH following initial intrathecal catheter implantation, a prophylactic EBP with a high blood volume was used for PDPH prevention during surgery. Catheters were replaced using 40 mL EBP before entering dural space at a speed of 5mL/min into the epidural space. Patients were asked to quantify pain experience and functional ability.

Results: From a sample of 72 patients admitted for catheter exchange with or without pump, 22 patients (33%) (12 male, 10 female) had a history of PDPH following initial implantation. Diagnostic and therapeutic measures occurring with malfunction of intrathecal catheter pump systems were described. Twenty-one patients were successfully treated with prophylactic EBP, while one patient could not be properly evaluated because of intracranial bleeding as the underlying disease.

Conclusions: A new approach using a high-volume prophylactic EBP for preventing PDPH following catheter exchange is presented. The efficacy and safety of this technique for 1 year follow-up have been evaluated and was found to be safe and potentially effective.

No MeSH data available.


Related in: MedlinePlus