Limits...
Structural and spectral investigations of the recently synthesized chalcone (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one, a potential chemotherapeutic agent.

Barakat A, Al-Majid AM, Soliman SM, Mabkhot YN, Ali M, Ghabbour HA, Fun HK, Wadood A - Chem Cent J (2015)

Bottom Line: The calculated IR fundamental bands were assigned and compared with the experimental data.Molecular stability was successfully analyzed using NBO and electron delocalization is confirmed by MEP.Graphical Abstract(E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one: a crystal structure and computational studies.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia ; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, 21321 Alexandria, Ibrahimia Egypt.

ABSTRACT

Background: Chalcones (1,3-diaryl-2-propen-1-ones, represent an important subgroup of the polyphenolic family, which have shown a wide spectrum of medical and industrial application. Due to their redundancy in plants and ease of preparation, this category of molecules has inspired considerable attention for potential therapeutic uses. They are also effective in vivo as anti-tumor promoting, cell proliferating inhibitors and chemo preventing agents.

Results: Synthesis and molecular structure investigation of (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one (3) is reported. The structure of the title compound 3 is confirmed by X-ray crystallography. The optimized molecular structure of the studied compound is calculated using DFT B3LYP/6-311G (d,p) method. The calculated geometric parameters are in good agreement with the experimental data obtained from our reported X-ay structure. The calculated IR fundamental bands were assigned and compared with the experimental data. The electronic spectra of the studied compound have been calculated using the time dependant density functional theory (TD-DFT). The longest wavelength band is due to H → L (79 %) electronic transition which belongs to π-π* excitation. The (1)H- and (13)C-NMR chemical shifts were calculated using gauge independent atomic orbitals (GIAO) method, which showed good correlations with the experimental data (R(2) = 0.9911-0.9965). The natural bond orbital (NBO) calculations were performed to predict the natural atomic charges at different atomic sites. The molecular electrostatic potential (MEP) was used to visualize the charge distribution on the molecule. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb and may act as potential anti-diabetic compound.

Conclusions: (E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one single crystal is grown and characterized by single crystal X-ray diffraction, FT-IR, UV-vis, DFT and optimized geometrical parameters are close to the experimental bond lengths and angles. Molecular stability was successfully analyzed using NBO and electron delocalization is confirmed by MEP. Prediction of Activity Spectra Analysis of the title compound, predicts anti-diabetic activity with probability to have an active value of 0.348. Graphical Abstract(E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one: a crystal structure and computational studies.

No MeSH data available.


Related in: MedlinePlus

The crystal packing of 3
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4477317&req=5

Fig2: The crystal packing of 3

Mentions: The asymmetric unit contains one molecule. The crystal structure of compound 3 is composed of naphthalene (C1–C10) and mesitylene (C14–C19) rings linked through prop-1-en-2-one (Fig. 1). The dihedral angle between the two ring systems is 36.24 (2) ° and the bond length between C12 and C13 is 1.342 (2) which indicates its double bond nature. The crystal packing shows that the molecules are arranged in rows along the a-axis and these rows are stacked by C–H · · · π interactions (see Tables 1 and 2) along the c-axis (Fig. 2). No significant hydrogen bonds were found. Additional file 1: Table S1. Geometric parameters (Å, °) compound 3.Fig. 1


Structural and spectral investigations of the recently synthesized chalcone (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one, a potential chemotherapeutic agent.

Barakat A, Al-Majid AM, Soliman SM, Mabkhot YN, Ali M, Ghabbour HA, Fun HK, Wadood A - Chem Cent J (2015)

The crystal packing of 3
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4477317&req=5

Fig2: The crystal packing of 3
Mentions: The asymmetric unit contains one molecule. The crystal structure of compound 3 is composed of naphthalene (C1–C10) and mesitylene (C14–C19) rings linked through prop-1-en-2-one (Fig. 1). The dihedral angle between the two ring systems is 36.24 (2) ° and the bond length between C12 and C13 is 1.342 (2) which indicates its double bond nature. The crystal packing shows that the molecules are arranged in rows along the a-axis and these rows are stacked by C–H · · · π interactions (see Tables 1 and 2) along the c-axis (Fig. 2). No significant hydrogen bonds were found. Additional file 1: Table S1. Geometric parameters (Å, °) compound 3.Fig. 1

Bottom Line: The calculated IR fundamental bands were assigned and compared with the experimental data.Molecular stability was successfully analyzed using NBO and electron delocalization is confirmed by MEP.Graphical Abstract(E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one: a crystal structure and computational studies.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia ; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, 21321 Alexandria, Ibrahimia Egypt.

ABSTRACT

Background: Chalcones (1,3-diaryl-2-propen-1-ones, represent an important subgroup of the polyphenolic family, which have shown a wide spectrum of medical and industrial application. Due to their redundancy in plants and ease of preparation, this category of molecules has inspired considerable attention for potential therapeutic uses. They are also effective in vivo as anti-tumor promoting, cell proliferating inhibitors and chemo preventing agents.

Results: Synthesis and molecular structure investigation of (E)-3-mesityl-1-(naphthalen-2-yl) prop-2-en-1-one (3) is reported. The structure of the title compound 3 is confirmed by X-ray crystallography. The optimized molecular structure of the studied compound is calculated using DFT B3LYP/6-311G (d,p) method. The calculated geometric parameters are in good agreement with the experimental data obtained from our reported X-ay structure. The calculated IR fundamental bands were assigned and compared with the experimental data. The electronic spectra of the studied compound have been calculated using the time dependant density functional theory (TD-DFT). The longest wavelength band is due to H → L (79 %) electronic transition which belongs to π-π* excitation. The (1)H- and (13)C-NMR chemical shifts were calculated using gauge independent atomic orbitals (GIAO) method, which showed good correlations with the experimental data (R(2) = 0.9911-0.9965). The natural bond orbital (NBO) calculations were performed to predict the natural atomic charges at different atomic sites. The molecular electrostatic potential (MEP) was used to visualize the charge distribution on the molecule. Molecular docking results suggest that the compound might exhibit inhibitory activity against GPb and may act as potential anti-diabetic compound.

Conclusions: (E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one single crystal is grown and characterized by single crystal X-ray diffraction, FT-IR, UV-vis, DFT and optimized geometrical parameters are close to the experimental bond lengths and angles. Molecular stability was successfully analyzed using NBO and electron delocalization is confirmed by MEP. Prediction of Activity Spectra Analysis of the title compound, predicts anti-diabetic activity with probability to have an active value of 0.348. Graphical Abstract(E)-3-Mesityl-1-(naphthalen-2-yl) prop-2-en-1-one: a crystal structure and computational studies.

No MeSH data available.


Related in: MedlinePlus