Limits...
A multivariate analysis on the comparison of raw notoginseng (Sanqi) and its granule products by thin-layer chromatography and ultra-performance liquid chromatography.

Zhou X, Razmovski-Naumovski V, Chan K - Chin Med (2015)

Bottom Line: The contents of the five marker compounds in Group 1 were higher than Group 2 and also exhibited stronger ABTS activity (P = 0.005).By Pearson correlation, the contents of the five compounds in the samples were positively and significantly correlated to their antioxidant activities.UPLC was more efficient than TLC for the simultaneous determination of the five major compounds in Sanqi products in terms of linearity, higher sensitivity and repeatability.

View Article: PubMed Central - PubMed

Affiliation: The National Institute of Complementary Medicine, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 Australia.

ABSTRACT

Background: Granule products produced from medicinal herbs are gaining popularity. However, there have been few studies comparing the quality or efficacy of granules with those of herbal formulations. This study aims to compare commercially available notoginseng (Sanqi in Chinese) in both raw and granule forms by thin layer chromatography (TLC) and ultra-performance liquid chromatography with photodiode array detection (UPLC-PDA) using multivariate analysis.

Methods: Aqueous extracts of the raw herb (collected from six different sources in China) and granule products (purchased in China, Taiwan and Australia) were re-extracted with methanol to remove water-soluble excipients. Five compounds (ginsenosides Rg1, Rg2, Rd and Rb1 and notoginsenoside NR1) in the methanolic extracts were quantified by TLC and UPLC-PDA. Multivariate statistical analysis using hierarchical component analysis (HCA) and principal component analysis (PCA) was used to determine the similarities between the granule products and raw herbs. A 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay was used to measure the antioxidant capacities of the extracts.

Results: HCA and PCA of the TLC analysis clustered the granule products into one group. By UPLC analysis, the raw herbs and two of the granule products (G7 and G12) were allocated into Group 1 and the rest of the granule products into Group 2. The contents of the five marker compounds in Group 1 were higher than Group 2 and also exhibited stronger ABTS activity (P = 0.005). By Pearson correlation, the contents of the five compounds in the samples were positively and significantly correlated to their antioxidant activities.

Conclusions: UPLC was more efficient than TLC for the simultaneous determination of the five major compounds in Sanqi products in terms of linearity, higher sensitivity and repeatability. The statistical analysis of the samples by HCA and PCA revealed that the contents of the marker compounds were significantly higher in the raw herb group than the granule group.

No MeSH data available.


Related in: MedlinePlus

Chromatograms of five ginsenosides analysed by UPLC-PDA. a Raw herb extract (R6), b Granule extract (G12). (1) NR1, (2) Rg1, (3) Rb1, (4) Rg2 and (5) Rd
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4477300&req=5

Fig1: Chromatograms of five ginsenosides analysed by UPLC-PDA. a Raw herb extract (R6), b Granule extract (G12). (1) NR1, (2) Rg1, (3) Rb1, (4) Rg2 and (5) Rd

Mentions: Typical UPLC-PDA profiles of the raw notoginseng and granule extracts were shown in Fig. 1. The contents of the marker compounds in the samples were shown in Table 3. After many UPLC runs, ginsenosides Re and Rg1 could not be successfully separated. This was also a problem in previous chromatography studies [24–27]. According to Wan et al. [28], the Rg1/Re ratio was 6.19 ± 0.82 in 18 samples of notoginseng from different origins. As the content of Re is much smaller than that of Rg1 and this is a comparative study, the total content of Rg1 and Re was used as the Rg1 content. The low standard deviations of the five standards in the raw herbs and granules showed good repeatability for the quantification (Table 3). The contents of the marker compounds in the granules were substantially lower than those in the raw herb samples, with the exception of G7 and G12. The contents of each of the five compounds were not significantly different within the raw herb samples and within the granule products (P > 0.05). However, these two groups were significantly different when the contents were compared (P = 0.000). Differences in the contents of the marker compounds in the granules might be related to the variable yields (Table 1) and the different notoginseng contents claimed by the manufacturers.Fig. 1


A multivariate analysis on the comparison of raw notoginseng (Sanqi) and its granule products by thin-layer chromatography and ultra-performance liquid chromatography.

Zhou X, Razmovski-Naumovski V, Chan K - Chin Med (2015)

Chromatograms of five ginsenosides analysed by UPLC-PDA. a Raw herb extract (R6), b Granule extract (G12). (1) NR1, (2) Rg1, (3) Rb1, (4) Rg2 and (5) Rd
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4477300&req=5

Fig1: Chromatograms of five ginsenosides analysed by UPLC-PDA. a Raw herb extract (R6), b Granule extract (G12). (1) NR1, (2) Rg1, (3) Rb1, (4) Rg2 and (5) Rd
Mentions: Typical UPLC-PDA profiles of the raw notoginseng and granule extracts were shown in Fig. 1. The contents of the marker compounds in the samples were shown in Table 3. After many UPLC runs, ginsenosides Re and Rg1 could not be successfully separated. This was also a problem in previous chromatography studies [24–27]. According to Wan et al. [28], the Rg1/Re ratio was 6.19 ± 0.82 in 18 samples of notoginseng from different origins. As the content of Re is much smaller than that of Rg1 and this is a comparative study, the total content of Rg1 and Re was used as the Rg1 content. The low standard deviations of the five standards in the raw herbs and granules showed good repeatability for the quantification (Table 3). The contents of the marker compounds in the granules were substantially lower than those in the raw herb samples, with the exception of G7 and G12. The contents of each of the five compounds were not significantly different within the raw herb samples and within the granule products (P > 0.05). However, these two groups were significantly different when the contents were compared (P = 0.000). Differences in the contents of the marker compounds in the granules might be related to the variable yields (Table 1) and the different notoginseng contents claimed by the manufacturers.Fig. 1

Bottom Line: The contents of the five marker compounds in Group 1 were higher than Group 2 and also exhibited stronger ABTS activity (P = 0.005).By Pearson correlation, the contents of the five compounds in the samples were positively and significantly correlated to their antioxidant activities.UPLC was more efficient than TLC for the simultaneous determination of the five major compounds in Sanqi products in terms of linearity, higher sensitivity and repeatability.

View Article: PubMed Central - PubMed

Affiliation: The National Institute of Complementary Medicine, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 Australia.

ABSTRACT

Background: Granule products produced from medicinal herbs are gaining popularity. However, there have been few studies comparing the quality or efficacy of granules with those of herbal formulations. This study aims to compare commercially available notoginseng (Sanqi in Chinese) in both raw and granule forms by thin layer chromatography (TLC) and ultra-performance liquid chromatography with photodiode array detection (UPLC-PDA) using multivariate analysis.

Methods: Aqueous extracts of the raw herb (collected from six different sources in China) and granule products (purchased in China, Taiwan and Australia) were re-extracted with methanol to remove water-soluble excipients. Five compounds (ginsenosides Rg1, Rg2, Rd and Rb1 and notoginsenoside NR1) in the methanolic extracts were quantified by TLC and UPLC-PDA. Multivariate statistical analysis using hierarchical component analysis (HCA) and principal component analysis (PCA) was used to determine the similarities between the granule products and raw herbs. A 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay was used to measure the antioxidant capacities of the extracts.

Results: HCA and PCA of the TLC analysis clustered the granule products into one group. By UPLC analysis, the raw herbs and two of the granule products (G7 and G12) were allocated into Group 1 and the rest of the granule products into Group 2. The contents of the five marker compounds in Group 1 were higher than Group 2 and also exhibited stronger ABTS activity (P = 0.005). By Pearson correlation, the contents of the five compounds in the samples were positively and significantly correlated to their antioxidant activities.

Conclusions: UPLC was more efficient than TLC for the simultaneous determination of the five major compounds in Sanqi products in terms of linearity, higher sensitivity and repeatability. The statistical analysis of the samples by HCA and PCA revealed that the contents of the marker compounds were significantly higher in the raw herb group than the granule group.

No MeSH data available.


Related in: MedlinePlus