Limits...
A Robust H ∞ Controller for an UAV Flight Control System.

López J, Dormido R, Dormido S, Gómez JP - ScientificWorldJournal (2015)

Bottom Line: A robust inner-outer loop strategy is implemented.The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft.The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

View Article: PubMed Central - PubMed

Affiliation: Dynamic Systems Research Group, Universidad Politécnica de Madrid (ETSIA/EUITA), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain.

ABSTRACT
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

No MeSH data available.


Control variables evolution during the 45-feet heading angle response.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4477258&req=5

fig13: Control variables evolution during the 45-feet heading angle response.

Mentions: The controller is able to manage adequately the output and to calculate the control vector. Control variables evolutions are shown in Figure 13. The throttle varies around 2% and elevator, ailerons, and rudder present a smooth behaviour. The aileron and rudder are deflected by the controller to order the 45-degree change of direction. Immediately, a sustentation loose typical in this type of manoeuvers is suffered by the aircraft. To compensate this trend, the elevator acts to raise the noise of the aircraft and slightly increase the throttle to maintain the velocity.


A Robust H ∞ Controller for an UAV Flight Control System.

López J, Dormido R, Dormido S, Gómez JP - ScientificWorldJournal (2015)

Control variables evolution during the 45-feet heading angle response.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4477258&req=5

fig13: Control variables evolution during the 45-feet heading angle response.
Mentions: The controller is able to manage adequately the output and to calculate the control vector. Control variables evolutions are shown in Figure 13. The throttle varies around 2% and elevator, ailerons, and rudder present a smooth behaviour. The aileron and rudder are deflected by the controller to order the 45-degree change of direction. Immediately, a sustentation loose typical in this type of manoeuvers is suffered by the aircraft. To compensate this trend, the elevator acts to raise the noise of the aircraft and slightly increase the throttle to maintain the velocity.

Bottom Line: A robust inner-outer loop strategy is implemented.The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft.The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

View Article: PubMed Central - PubMed

Affiliation: Dynamic Systems Research Group, Universidad Politécnica de Madrid (ETSIA/EUITA), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain.

ABSTRACT
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

No MeSH data available.