Limits...
A Robust H ∞ Controller for an UAV Flight Control System.

López J, Dormido R, Dormido S, Gómez JP - ScientificWorldJournal (2015)

Bottom Line: A robust inner-outer loop strategy is implemented.The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft.The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

View Article: PubMed Central - PubMed

Affiliation: Dynamic Systems Research Group, Universidad Politécnica de Madrid (ETSIA/EUITA), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain.

ABSTRACT
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

No MeSH data available.


Lateral deviation step response (correct order reduction).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4477258&req=5

fig9: Lateral deviation step response (correct order reduction).

Mentions: This method has been applied iteratively checking the frequency and time responses every step to evaluate the performance of the proposed UAV control scheme. One example of the time response in one step of this iterative process is shown in Figure 9.


A Robust H ∞ Controller for an UAV Flight Control System.

López J, Dormido R, Dormido S, Gómez JP - ScientificWorldJournal (2015)

Lateral deviation step response (correct order reduction).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4477258&req=5

fig9: Lateral deviation step response (correct order reduction).
Mentions: This method has been applied iteratively checking the frequency and time responses every step to evaluate the performance of the proposed UAV control scheme. One example of the time response in one step of this iterative process is shown in Figure 9.

Bottom Line: A robust inner-outer loop strategy is implemented.The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft.The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

View Article: PubMed Central - PubMed

Affiliation: Dynamic Systems Research Group, Universidad Politécnica de Madrid (ETSIA/EUITA), Plaza Cardenal Cisneros 3, 28040 Madrid, Spain.

ABSTRACT
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

No MeSH data available.