Limits...
Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation.

Pirotte N, Stevens AS, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, Paesen R, Ameloot M, Cebrià F, Artois T, Smeets K - Oxid Med Cell Longev (2015)

Bottom Line: Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis.ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process.Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

View Article: PubMed Central - PubMed

Affiliation: Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.

ABSTRACT
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

No MeSH data available.


Related in: MedlinePlus

DPI exposure impairs proper neuroregeneration. (a) Regenerating head, trunk, and tail fragments exposed to either control medium, 0.01% DMSO, or DPI (2 μM) during a regeneration period of 5 days were stained using anti-SYNORF-1, visualizing the central nervous system (CNS). In the DPI-exposed trunks (4/4) and tails (4/4), the amputated brain failed to regenerate properly, indicated by red arrow heads. (n = 4). Close-ups of the blastemas were presented below the respective figure for the regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm. (b) Gpas expression in 7-days-regenerating head, trunk, and tail fragments visualized using in situ hybridization. Reduction of the cephalic ganglia in DPI-exposed trunks (4/5) and tails (5/5) was observed, as well as improper formation of the regenerating pharynx in regenerating head pieces (4/4). Close-ups of the blastemas are presented below the respective picture of regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4477255&req=5

fig7: DPI exposure impairs proper neuroregeneration. (a) Regenerating head, trunk, and tail fragments exposed to either control medium, 0.01% DMSO, or DPI (2 μM) during a regeneration period of 5 days were stained using anti-SYNORF-1, visualizing the central nervous system (CNS). In the DPI-exposed trunks (4/4) and tails (4/4), the amputated brain failed to regenerate properly, indicated by red arrow heads. (n = 4). Close-ups of the blastemas were presented below the respective figure for the regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm. (b) Gpas expression in 7-days-regenerating head, trunk, and tail fragments visualized using in situ hybridization. Reduction of the cephalic ganglia in DPI-exposed trunks (4/5) and tails (5/5) was observed, as well as improper formation of the regenerating pharynx in regenerating head pieces (4/4). Close-ups of the blastemas are presented below the respective picture of regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm.

Mentions: To characterize the effects of ROS inhibition on differentiation, we investigated the regeneration of the central nervous system since we observed a decrease in the size of the brain in the DPI-exposed animals visualized by the DAPI staining (Figure 6(d)). Although the importance of ROS signaling for proper neuroregeneration has been identified before, we show for the first time their involvement in the restoration of the central nervous system (CNS) and more specifically in the regeneration of the brain. DPI-exposed trunk and tail fragments had reduced cephalic ganglia in comparison with the control animals, which was visualized by both immunohistochemistry using an anti-SYNORF-1 antibody and in situ hybridization of the smed-gpas gene (Figures 7(a) and 7(b)). In accordance with these data, the transcript levels of prohormone convertase 2 (pc2), a neurotransmitter convertor [69], and nou-darake (ndk), a fgfr-related gene which restricts brain development to the head region [70], were significantly reduced during DPI exposure (pc2: p = 0.016; ndk: p = 0.016), which showed that correct regeneration of the (central) nervous system relies on ROS signaling (Figure 3, supplementary Table 1).


Reactive Oxygen Species in Planarian Regeneration: An Upstream Necessity for Correct Patterning and Brain Formation.

Pirotte N, Stevens AS, Fraguas S, Plusquin M, Van Roten A, Van Belleghem F, Paesen R, Ameloot M, Cebrià F, Artois T, Smeets K - Oxid Med Cell Longev (2015)

DPI exposure impairs proper neuroregeneration. (a) Regenerating head, trunk, and tail fragments exposed to either control medium, 0.01% DMSO, or DPI (2 μM) during a regeneration period of 5 days were stained using anti-SYNORF-1, visualizing the central nervous system (CNS). In the DPI-exposed trunks (4/4) and tails (4/4), the amputated brain failed to regenerate properly, indicated by red arrow heads. (n = 4). Close-ups of the blastemas were presented below the respective figure for the regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm. (b) Gpas expression in 7-days-regenerating head, trunk, and tail fragments visualized using in situ hybridization. Reduction of the cephalic ganglia in DPI-exposed trunks (4/5) and tails (5/5) was observed, as well as improper formation of the regenerating pharynx in regenerating head pieces (4/4). Close-ups of the blastemas are presented below the respective picture of regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4477255&req=5

fig7: DPI exposure impairs proper neuroregeneration. (a) Regenerating head, trunk, and tail fragments exposed to either control medium, 0.01% DMSO, or DPI (2 μM) during a regeneration period of 5 days were stained using anti-SYNORF-1, visualizing the central nervous system (CNS). In the DPI-exposed trunks (4/4) and tails (4/4), the amputated brain failed to regenerate properly, indicated by red arrow heads. (n = 4). Close-ups of the blastemas were presented below the respective figure for the regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm. (b) Gpas expression in 7-days-regenerating head, trunk, and tail fragments visualized using in situ hybridization. Reduction of the cephalic ganglia in DPI-exposed trunks (4/5) and tails (5/5) was observed, as well as improper formation of the regenerating pharynx in regenerating head pieces (4/4). Close-ups of the blastemas are presented below the respective picture of regenerating trunk and tail fragments. Scale bars: 1 mm. Scale bars close-ups: 500 μm.
Mentions: To characterize the effects of ROS inhibition on differentiation, we investigated the regeneration of the central nervous system since we observed a decrease in the size of the brain in the DPI-exposed animals visualized by the DAPI staining (Figure 6(d)). Although the importance of ROS signaling for proper neuroregeneration has been identified before, we show for the first time their involvement in the restoration of the central nervous system (CNS) and more specifically in the regeneration of the brain. DPI-exposed trunk and tail fragments had reduced cephalic ganglia in comparison with the control animals, which was visualized by both immunohistochemistry using an anti-SYNORF-1 antibody and in situ hybridization of the smed-gpas gene (Figures 7(a) and 7(b)). In accordance with these data, the transcript levels of prohormone convertase 2 (pc2), a neurotransmitter convertor [69], and nou-darake (ndk), a fgfr-related gene which restricts brain development to the head region [70], were significantly reduced during DPI exposure (pc2: p = 0.016; ndk: p = 0.016), which showed that correct regeneration of the (central) nervous system relies on ROS signaling (Figure 3, supplementary Table 1).

Bottom Line: Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis.ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process.Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

View Article: PubMed Central - PubMed

Affiliation: Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.

ABSTRACT
Recent research highlighted the impact of ROS as upstream regulators of tissue regeneration. We investigated their role and targeted processes during the regeneration of different body structures using the planarian Schmidtea mediterranea, an organism capable of regenerating its entire body, including its brain. The amputation of head and tail compartments induces a ROS burst at the wound site independently of the orientation. Inhibition of ROS production by diphenyleneiodonium (DPI) or apocynin (APO) causes regeneration defaults at both the anterior and posterior wound sites, resulting in reduced regeneration sites (blastemas) and improper tissue homeostasis. ROS signaling is necessary for early differentiation and inhibition of the ROS burst results in defects on the regeneration of the nervous system and on the patterning process. Stem cell proliferation was not affected, as indicated by histone H3-P immunostaining, fluorescence-activated cell sorting (FACS), in situ hybridization of smedwi-1, and transcript levels of proliferation-related genes. We showed for the first time that ROS modulate both anterior and posterior regeneration in a context where regeneration is not limited to certain body structures. Our results indicate that ROS are key players in neuroregeneration through interference with the differentiation and patterning processes.

No MeSH data available.


Related in: MedlinePlus